Loading…

Evolutionary Divergence of the Wsp Signal Transduction Systems in Beta- and Gammaproteobacteria

Bacteria rapidly adapt to their environment by integrating external stimuli through diverse signal transduction systems. Pseudomonas aeruginosa, for example, senses surface contact through the Wsp signal transduction system to trigger the production of cyclic di-GMP. Diverse mutations in genes that...

Full description

Saved in:
Bibliographic Details
Published in:Applied and environmental microbiology 2021-10, Vol.87 (22), p.e0130621-e0130621
Main Authors: Kessler, Collin, Mhatre, Eisha, Cooper, Vaughn, Kim, Wook
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bacteria rapidly adapt to their environment by integrating external stimuli through diverse signal transduction systems. Pseudomonas aeruginosa, for example, senses surface contact through the Wsp signal transduction system to trigger the production of cyclic di-GMP. Diverse mutations in genes that manifest enhanced biofilm formation are frequently reported in clinical isolates of P. aeruginosa and in biofilm studies of Pseudomonas spp. and Burkholderia cenocepacia. In contrast to the convergent phenotypes associated with comparable mutations, we demonstrate that the Wsp system in B. cenocepacia does not impact intracellular cyclic di-GMP levels, unlike that in Pseudomonas spp. Our current mechanistic understanding of the Wsp system is based entirely on the study of four Pseudomonas spp., and its phylogenetic distribution remains unknown. Here, we present a broad phylogenetic analysis to show that the Wsp system originated in the betaproteobacteria and then horizontally transferred to Pseudomonas spp., the sole member of the gammaproteobacteria. Alignment of 794 independent Wsp systems with reported mutations from the literature identified key amino acid residues that fall within and outside annotated functional domains. Specific residues that are highly conserved but uniquely modified in B. cenocepacia likely define mechanistic differences among Wsp systems. We also find the greatest sequence variation in the extracellular sensory domain of WspA, indicating potential adaptations to diverse external stimuli beyond surface contact sensing. This study emphasizes the need to better understand the breadth of functional diversity of the Wsp system as a major regulator of bacterial adaptation beyond B. cenocepacia and select Pseudomonas spp. The Wsp signal transduction system serves as an important model system for studying how bacteria adapt to living in densely structured communities known as biofilms. Biofilms frequently cause chronic infections and environmental fouling, and they are very difficult to eradicate. In Pseudomonas aeruginosa, the Wsp system senses contact with a surface, which in turn activates specific genes that promote biofilm formation. We demonstrate that the Wsp system in Burkholderia cenocepacia regulates biofilm formation uniquely from that in Pseudomonas species. Furthermore, a broad phylogenetic analysis reveals the presence of the Wsp system in diverse bacterial species, and sequence analyses of 794 independent systems suggest that th
ISSN:0099-2240
1098-5336
DOI:10.1128/AEM.01306-21