Loading…
Artificial neural networks applied for predicting and explaining the education level of Twitter users
This paper provides a novel procedure to estimate the education level of social network (SN) users by leveraging artificial neural networks (ANN). Additionally, it provides a robust methodology to extract explanatory insights from ANN models. It also contributes to the study of socio-demographic phe...
Saved in:
Published in: | Social network analysis and mining 2021-12, Vol.11 (1), p.112-112, Article 112 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-14d0f2a9265b3f24da80145794e13fe1c79d7e3db8c4ef858f6fdf9ab2a582963 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-14d0f2a9265b3f24da80145794e13fe1c79d7e3db8c4ef858f6fdf9ab2a582963 |
container_end_page | 112 |
container_issue | 1 |
container_start_page | 112 |
container_title | Social network analysis and mining |
container_volume | 11 |
creator | Florea, Alexandru Razvan Roman, Monica |
description | This paper provides a novel procedure to estimate the education level of social network (SN) users by leveraging artificial neural networks (ANN). Additionally, it provides a robust methodology to extract explanatory insights from ANN models. It also contributes to the study of socio-demographic phenomena by utilizing less explored data sources, such as social media. It proposes Twitter data as an alternative data source for in-depth social studies, and ANN for complex patterns recognition. Moreover, cutting edge technology, such as face recognition, on social media data are applied to explain the social characteristics of country-specific users. We use nine variables and three hidden layers of neurons to identify high-skilled users. The resulted model describes well the level of education by correctly estimating it with an accuracy of 95% on the training set and an accuracy of 92% on a testing set. Approximately 30% of the analyzed users are highly skilled and this share does not differ among the two genders. However, it tends to be lower among users younger than 30 years old. |
doi_str_mv | 10.1007/s13278-021-00832-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8558764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920162945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-14d0f2a9265b3f24da80145794e13fe1c79d7e3db8c4ef858f6fdf9ab2a582963</originalsourceid><addsrcrecordid>eNp9kctuFDEQRS0ESqKQH8gCWWLDpsHPbnuDFEUkIEVik6wtT7s8ceixG9udwN_jySTDY8GqbNWpW3V1ETql5D0lZPhQKGeD6gijHSGKs46-QEdU9bqTotcv929JDtFJKXeEEEo416Q_QIdcDEJyRY4QnOUafBiDnXCEJT-W-pDyt4LtPE8BHPYp4zmDC2MNcY1tdBh-zJMNcfutt4DBLaOtIUU8wT1MOHl8_RBqhYyXArm8Rq-8nQqcPNVjdHPx6fr8c3f19fLL-dlVN7aDakeFI55ZzXq54p4JZxWhQg5aAOUe6DhoNwB3KzUK8Eoq33vntV0xKxXTPT9GH3e687LagBsh1ubIzDlsbP5pkg3m704Mt2ad7o2SUg29aALvngRy-r5AqWYTygjTZCOkpRgmtaRUCi4b-vYf9C4tOTZ7hmlGaM-02FJsR405lZLB74-hxGyDNLsgTQvSPAZpaBt686eN_chzbA3gO6C0VlxD_r37P7K_AA7Eqts</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920162945</pqid></control><display><type>article</type><title>Artificial neural networks applied for predicting and explaining the education level of Twitter users</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Springer Nature</source><source>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</source><creator>Florea, Alexandru Razvan ; Roman, Monica</creator><creatorcontrib>Florea, Alexandru Razvan ; Roman, Monica</creatorcontrib><description>This paper provides a novel procedure to estimate the education level of social network (SN) users by leveraging artificial neural networks (ANN). Additionally, it provides a robust methodology to extract explanatory insights from ANN models. It also contributes to the study of socio-demographic phenomena by utilizing less explored data sources, such as social media. It proposes Twitter data as an alternative data source for in-depth social studies, and ANN for complex patterns recognition. Moreover, cutting edge technology, such as face recognition, on social media data are applied to explain the social characteristics of country-specific users. We use nine variables and three hidden layers of neurons to identify high-skilled users. The resulted model describes well the level of education by correctly estimating it with an accuracy of 95% on the training set and an accuracy of 92% on a testing set. Approximately 30% of the analyzed users are highly skilled and this share does not differ among the two genders. However, it tends to be lower among users younger than 30 years old.</description><identifier>ISSN: 1869-5450</identifier><identifier>EISSN: 1869-5469</identifier><identifier>DOI: 10.1007/s13278-021-00832-1</identifier><identifier>PMID: 34745380</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Accuracy ; Acknowledgment ; Applications of Graph Theory and Complex Networks ; Artificial intelligence ; Artificial neural networks ; Computer Science ; COVID-19 vaccines ; Data Mining and Knowledge Discovery ; Data sources ; Digital media ; Economics ; Education ; Face recognition ; Game Theory ; Humanities ; Law ; Methodology of the Social Sciences ; Neural networks ; Neurons ; Original ; Original Article ; Pattern recognition ; Social and Behav. Sciences ; Social media ; Social networks ; Social studies ; Sociodemographics ; Statistics for Social Sciences</subject><ispartof>Social network analysis and mining, 2021-12, Vol.11 (1), p.112-112, Article 112</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021.</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-14d0f2a9265b3f24da80145794e13fe1c79d7e3db8c4ef858f6fdf9ab2a582963</citedby><cites>FETCH-LOGICAL-c474t-14d0f2a9265b3f24da80145794e13fe1c79d7e3db8c4ef858f6fdf9ab2a582963</cites><orcidid>0000-0002-7854-0109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2920162945?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,12845,21392,27922,27923,33221,33609,33610,43731</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34745380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Florea, Alexandru Razvan</creatorcontrib><creatorcontrib>Roman, Monica</creatorcontrib><title>Artificial neural networks applied for predicting and explaining the education level of Twitter users</title><title>Social network analysis and mining</title><addtitle>Soc. Netw. Anal. Min</addtitle><addtitle>Soc Netw Anal Min</addtitle><description>This paper provides a novel procedure to estimate the education level of social network (SN) users by leveraging artificial neural networks (ANN). Additionally, it provides a robust methodology to extract explanatory insights from ANN models. It also contributes to the study of socio-demographic phenomena by utilizing less explored data sources, such as social media. It proposes Twitter data as an alternative data source for in-depth social studies, and ANN for complex patterns recognition. Moreover, cutting edge technology, such as face recognition, on social media data are applied to explain the social characteristics of country-specific users. We use nine variables and three hidden layers of neurons to identify high-skilled users. The resulted model describes well the level of education by correctly estimating it with an accuracy of 95% on the training set and an accuracy of 92% on a testing set. Approximately 30% of the analyzed users are highly skilled and this share does not differ among the two genders. However, it tends to be lower among users younger than 30 years old.</description><subject>Accuracy</subject><subject>Acknowledgment</subject><subject>Applications of Graph Theory and Complex Networks</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Computer Science</subject><subject>COVID-19 vaccines</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Data sources</subject><subject>Digital media</subject><subject>Economics</subject><subject>Education</subject><subject>Face recognition</subject><subject>Game Theory</subject><subject>Humanities</subject><subject>Law</subject><subject>Methodology of the Social Sciences</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Original</subject><subject>Original Article</subject><subject>Pattern recognition</subject><subject>Social and Behav. Sciences</subject><subject>Social media</subject><subject>Social networks</subject><subject>Social studies</subject><subject>Sociodemographics</subject><subject>Statistics for Social Sciences</subject><issn>1869-5450</issn><issn>1869-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>ALSLI</sourceid><sourceid>M2R</sourceid><recordid>eNp9kctuFDEQRS0ESqKQH8gCWWLDpsHPbnuDFEUkIEVik6wtT7s8ceixG9udwN_jySTDY8GqbNWpW3V1ETql5D0lZPhQKGeD6gijHSGKs46-QEdU9bqTotcv929JDtFJKXeEEEo416Q_QIdcDEJyRY4QnOUafBiDnXCEJT-W-pDyt4LtPE8BHPYp4zmDC2MNcY1tdBh-zJMNcfutt4DBLaOtIUU8wT1MOHl8_RBqhYyXArm8Rq-8nQqcPNVjdHPx6fr8c3f19fLL-dlVN7aDakeFI55ZzXq54p4JZxWhQg5aAOUe6DhoNwB3KzUK8Eoq33vntV0xKxXTPT9GH3e687LagBsh1ubIzDlsbP5pkg3m704Mt2ad7o2SUg29aALvngRy-r5AqWYTygjTZCOkpRgmtaRUCi4b-vYf9C4tOTZ7hmlGaM-02FJsR405lZLB74-hxGyDNLsgTQvSPAZpaBt686eN_chzbA3gO6C0VlxD_r37P7K_AA7Eqts</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Florea, Alexandru Razvan</creator><creator>Roman, Monica</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88J</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2R</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7854-0109</orcidid></search><sort><creationdate>20211201</creationdate><title>Artificial neural networks applied for predicting and explaining the education level of Twitter users</title><author>Florea, Alexandru Razvan ; Roman, Monica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-14d0f2a9265b3f24da80145794e13fe1c79d7e3db8c4ef858f6fdf9ab2a582963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Acknowledgment</topic><topic>Applications of Graph Theory and Complex Networks</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Computer Science</topic><topic>COVID-19 vaccines</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Data sources</topic><topic>Digital media</topic><topic>Economics</topic><topic>Education</topic><topic>Face recognition</topic><topic>Game Theory</topic><topic>Humanities</topic><topic>Law</topic><topic>Methodology of the Social Sciences</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Original</topic><topic>Original Article</topic><topic>Pattern recognition</topic><topic>Social and Behav. Sciences</topic><topic>Social media</topic><topic>Social networks</topic><topic>Social studies</topic><topic>Sociodemographics</topic><topic>Statistics for Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Florea, Alexandru Razvan</creatorcontrib><creatorcontrib>Roman, Monica</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Social Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Social network analysis and mining</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Florea, Alexandru Razvan</au><au>Roman, Monica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural networks applied for predicting and explaining the education level of Twitter users</atitle><jtitle>Social network analysis and mining</jtitle><stitle>Soc. Netw. Anal. Min</stitle><addtitle>Soc Netw Anal Min</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>112</spage><epage>112</epage><pages>112-112</pages><artnum>112</artnum><issn>1869-5450</issn><eissn>1869-5469</eissn><abstract>This paper provides a novel procedure to estimate the education level of social network (SN) users by leveraging artificial neural networks (ANN). Additionally, it provides a robust methodology to extract explanatory insights from ANN models. It also contributes to the study of socio-demographic phenomena by utilizing less explored data sources, such as social media. It proposes Twitter data as an alternative data source for in-depth social studies, and ANN for complex patterns recognition. Moreover, cutting edge technology, such as face recognition, on social media data are applied to explain the social characteristics of country-specific users. We use nine variables and three hidden layers of neurons to identify high-skilled users. The resulted model describes well the level of education by correctly estimating it with an accuracy of 95% on the training set and an accuracy of 92% on a testing set. Approximately 30% of the analyzed users are highly skilled and this share does not differ among the two genders. However, it tends to be lower among users younger than 30 years old.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><pmid>34745380</pmid><doi>10.1007/s13278-021-00832-1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7854-0109</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1869-5450 |
ispartof | Social network analysis and mining, 2021-12, Vol.11 (1), p.112-112, Article 112 |
issn | 1869-5450 1869-5469 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8558764 |
source | International Bibliography of the Social Sciences (IBSS); Springer Nature; Social Science Premium Collection (Proquest) (PQ_SDU_P3) |
subjects | Accuracy Acknowledgment Applications of Graph Theory and Complex Networks Artificial intelligence Artificial neural networks Computer Science COVID-19 vaccines Data Mining and Knowledge Discovery Data sources Digital media Economics Education Face recognition Game Theory Humanities Law Methodology of the Social Sciences Neural networks Neurons Original Original Article Pattern recognition Social and Behav. Sciences Social media Social networks Social studies Sociodemographics Statistics for Social Sciences |
title | Artificial neural networks applied for predicting and explaining the education level of Twitter users |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20networks%20applied%20for%20predicting%20and%20explaining%20the%20education%20level%20of%20Twitter%20users&rft.jtitle=Social%20network%20analysis%20and%20mining&rft.au=Florea,%20Alexandru%20Razvan&rft.date=2021-12-01&rft.volume=11&rft.issue=1&rft.spage=112&rft.epage=112&rft.pages=112-112&rft.artnum=112&rft.issn=1869-5450&rft.eissn=1869-5469&rft_id=info:doi/10.1007/s13278-021-00832-1&rft_dat=%3Cproquest_pubme%3E2920162945%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-14d0f2a9265b3f24da80145794e13fe1c79d7e3db8c4ef858f6fdf9ab2a582963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2920162945&rft_id=info:pmid/34745380&rfr_iscdi=true |