Loading…

Artificial neural networks applied for predicting and explaining the education level of Twitter users

This paper provides a novel procedure to estimate the education level of social network (SN) users by leveraging artificial neural networks (ANN). Additionally, it provides a robust methodology to extract explanatory insights from ANN models. It also contributes to the study of socio-demographic phe...

Full description

Saved in:
Bibliographic Details
Published in:Social network analysis and mining 2021-12, Vol.11 (1), p.112-112, Article 112
Main Authors: Florea, Alexandru Razvan, Roman, Monica
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-14d0f2a9265b3f24da80145794e13fe1c79d7e3db8c4ef858f6fdf9ab2a582963
cites cdi_FETCH-LOGICAL-c474t-14d0f2a9265b3f24da80145794e13fe1c79d7e3db8c4ef858f6fdf9ab2a582963
container_end_page 112
container_issue 1
container_start_page 112
container_title Social network analysis and mining
container_volume 11
creator Florea, Alexandru Razvan
Roman, Monica
description This paper provides a novel procedure to estimate the education level of social network (SN) users by leveraging artificial neural networks (ANN). Additionally, it provides a robust methodology to extract explanatory insights from ANN models. It also contributes to the study of socio-demographic phenomena by utilizing less explored data sources, such as social media. It proposes Twitter data as an alternative data source for in-depth social studies, and ANN for complex patterns recognition. Moreover, cutting edge technology, such as face recognition, on social media data are applied to explain the social characteristics of country-specific users. We use nine variables and three hidden layers of neurons to identify high-skilled users. The resulted model describes well the level of education by correctly estimating it with an accuracy of 95% on the training set and an accuracy of 92% on a testing set. Approximately 30% of the analyzed users are highly skilled and this share does not differ among the two genders. However, it tends to be lower among users younger than 30 years old.
doi_str_mv 10.1007/s13278-021-00832-1
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8558764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920162945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-14d0f2a9265b3f24da80145794e13fe1c79d7e3db8c4ef858f6fdf9ab2a582963</originalsourceid><addsrcrecordid>eNp9kctuFDEQRS0ESqKQH8gCWWLDpsHPbnuDFEUkIEVik6wtT7s8ceixG9udwN_jySTDY8GqbNWpW3V1ETql5D0lZPhQKGeD6gijHSGKs46-QEdU9bqTotcv929JDtFJKXeEEEo416Q_QIdcDEJyRY4QnOUafBiDnXCEJT-W-pDyt4LtPE8BHPYp4zmDC2MNcY1tdBh-zJMNcfutt4DBLaOtIUU8wT1MOHl8_RBqhYyXArm8Rq-8nQqcPNVjdHPx6fr8c3f19fLL-dlVN7aDakeFI55ZzXq54p4JZxWhQg5aAOUe6DhoNwB3KzUK8Eoq33vntV0xKxXTPT9GH3e687LagBsh1ubIzDlsbP5pkg3m704Mt2ad7o2SUg29aALvngRy-r5AqWYTygjTZCOkpRgmtaRUCi4b-vYf9C4tOTZ7hmlGaM-02FJsR405lZLB74-hxGyDNLsgTQvSPAZpaBt686eN_chzbA3gO6C0VlxD_r37P7K_AA7Eqts</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920162945</pqid></control><display><type>article</type><title>Artificial neural networks applied for predicting and explaining the education level of Twitter users</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Springer Nature</source><source>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</source><creator>Florea, Alexandru Razvan ; Roman, Monica</creator><creatorcontrib>Florea, Alexandru Razvan ; Roman, Monica</creatorcontrib><description>This paper provides a novel procedure to estimate the education level of social network (SN) users by leveraging artificial neural networks (ANN). Additionally, it provides a robust methodology to extract explanatory insights from ANN models. It also contributes to the study of socio-demographic phenomena by utilizing less explored data sources, such as social media. It proposes Twitter data as an alternative data source for in-depth social studies, and ANN for complex patterns recognition. Moreover, cutting edge technology, such as face recognition, on social media data are applied to explain the social characteristics of country-specific users. We use nine variables and three hidden layers of neurons to identify high-skilled users. The resulted model describes well the level of education by correctly estimating it with an accuracy of 95% on the training set and an accuracy of 92% on a testing set. Approximately 30% of the analyzed users are highly skilled and this share does not differ among the two genders. However, it tends to be lower among users younger than 30 years old.</description><identifier>ISSN: 1869-5450</identifier><identifier>EISSN: 1869-5469</identifier><identifier>DOI: 10.1007/s13278-021-00832-1</identifier><identifier>PMID: 34745380</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Accuracy ; Acknowledgment ; Applications of Graph Theory and Complex Networks ; Artificial intelligence ; Artificial neural networks ; Computer Science ; COVID-19 vaccines ; Data Mining and Knowledge Discovery ; Data sources ; Digital media ; Economics ; Education ; Face recognition ; Game Theory ; Humanities ; Law ; Methodology of the Social Sciences ; Neural networks ; Neurons ; Original ; Original Article ; Pattern recognition ; Social and Behav. Sciences ; Social media ; Social networks ; Social studies ; Sociodemographics ; Statistics for Social Sciences</subject><ispartof>Social network analysis and mining, 2021-12, Vol.11 (1), p.112-112, Article 112</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021.</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-14d0f2a9265b3f24da80145794e13fe1c79d7e3db8c4ef858f6fdf9ab2a582963</citedby><cites>FETCH-LOGICAL-c474t-14d0f2a9265b3f24da80145794e13fe1c79d7e3db8c4ef858f6fdf9ab2a582963</cites><orcidid>0000-0002-7854-0109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2920162945?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,12845,21392,27922,27923,33221,33609,33610,43731</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34745380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Florea, Alexandru Razvan</creatorcontrib><creatorcontrib>Roman, Monica</creatorcontrib><title>Artificial neural networks applied for predicting and explaining the education level of Twitter users</title><title>Social network analysis and mining</title><addtitle>Soc. Netw. Anal. Min</addtitle><addtitle>Soc Netw Anal Min</addtitle><description>This paper provides a novel procedure to estimate the education level of social network (SN) users by leveraging artificial neural networks (ANN). Additionally, it provides a robust methodology to extract explanatory insights from ANN models. It also contributes to the study of socio-demographic phenomena by utilizing less explored data sources, such as social media. It proposes Twitter data as an alternative data source for in-depth social studies, and ANN for complex patterns recognition. Moreover, cutting edge technology, such as face recognition, on social media data are applied to explain the social characteristics of country-specific users. We use nine variables and three hidden layers of neurons to identify high-skilled users. The resulted model describes well the level of education by correctly estimating it with an accuracy of 95% on the training set and an accuracy of 92% on a testing set. Approximately 30% of the analyzed users are highly skilled and this share does not differ among the two genders. However, it tends to be lower among users younger than 30 years old.</description><subject>Accuracy</subject><subject>Acknowledgment</subject><subject>Applications of Graph Theory and Complex Networks</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Computer Science</subject><subject>COVID-19 vaccines</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Data sources</subject><subject>Digital media</subject><subject>Economics</subject><subject>Education</subject><subject>Face recognition</subject><subject>Game Theory</subject><subject>Humanities</subject><subject>Law</subject><subject>Methodology of the Social Sciences</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Original</subject><subject>Original Article</subject><subject>Pattern recognition</subject><subject>Social and Behav. Sciences</subject><subject>Social media</subject><subject>Social networks</subject><subject>Social studies</subject><subject>Sociodemographics</subject><subject>Statistics for Social Sciences</subject><issn>1869-5450</issn><issn>1869-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>ALSLI</sourceid><sourceid>M2R</sourceid><recordid>eNp9kctuFDEQRS0ESqKQH8gCWWLDpsHPbnuDFEUkIEVik6wtT7s8ceixG9udwN_jySTDY8GqbNWpW3V1ETql5D0lZPhQKGeD6gijHSGKs46-QEdU9bqTotcv929JDtFJKXeEEEo416Q_QIdcDEJyRY4QnOUafBiDnXCEJT-W-pDyt4LtPE8BHPYp4zmDC2MNcY1tdBh-zJMNcfutt4DBLaOtIUU8wT1MOHl8_RBqhYyXArm8Rq-8nQqcPNVjdHPx6fr8c3f19fLL-dlVN7aDakeFI55ZzXq54p4JZxWhQg5aAOUe6DhoNwB3KzUK8Eoq33vntV0xKxXTPT9GH3e687LagBsh1ubIzDlsbP5pkg3m704Mt2ad7o2SUg29aALvngRy-r5AqWYTygjTZCOkpRgmtaRUCi4b-vYf9C4tOTZ7hmlGaM-02FJsR405lZLB74-hxGyDNLsgTQvSPAZpaBt686eN_chzbA3gO6C0VlxD_r37P7K_AA7Eqts</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Florea, Alexandru Razvan</creator><creator>Roman, Monica</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88J</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2R</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7854-0109</orcidid></search><sort><creationdate>20211201</creationdate><title>Artificial neural networks applied for predicting and explaining the education level of Twitter users</title><author>Florea, Alexandru Razvan ; Roman, Monica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-14d0f2a9265b3f24da80145794e13fe1c79d7e3db8c4ef858f6fdf9ab2a582963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Acknowledgment</topic><topic>Applications of Graph Theory and Complex Networks</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Computer Science</topic><topic>COVID-19 vaccines</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Data sources</topic><topic>Digital media</topic><topic>Economics</topic><topic>Education</topic><topic>Face recognition</topic><topic>Game Theory</topic><topic>Humanities</topic><topic>Law</topic><topic>Methodology of the Social Sciences</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Original</topic><topic>Original Article</topic><topic>Pattern recognition</topic><topic>Social and Behav. Sciences</topic><topic>Social media</topic><topic>Social networks</topic><topic>Social studies</topic><topic>Sociodemographics</topic><topic>Statistics for Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Florea, Alexandru Razvan</creatorcontrib><creatorcontrib>Roman, Monica</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Social Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Social network analysis and mining</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Florea, Alexandru Razvan</au><au>Roman, Monica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural networks applied for predicting and explaining the education level of Twitter users</atitle><jtitle>Social network analysis and mining</jtitle><stitle>Soc. Netw. Anal. Min</stitle><addtitle>Soc Netw Anal Min</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>112</spage><epage>112</epage><pages>112-112</pages><artnum>112</artnum><issn>1869-5450</issn><eissn>1869-5469</eissn><abstract>This paper provides a novel procedure to estimate the education level of social network (SN) users by leveraging artificial neural networks (ANN). Additionally, it provides a robust methodology to extract explanatory insights from ANN models. It also contributes to the study of socio-demographic phenomena by utilizing less explored data sources, such as social media. It proposes Twitter data as an alternative data source for in-depth social studies, and ANN for complex patterns recognition. Moreover, cutting edge technology, such as face recognition, on social media data are applied to explain the social characteristics of country-specific users. We use nine variables and three hidden layers of neurons to identify high-skilled users. The resulted model describes well the level of education by correctly estimating it with an accuracy of 95% on the training set and an accuracy of 92% on a testing set. Approximately 30% of the analyzed users are highly skilled and this share does not differ among the two genders. However, it tends to be lower among users younger than 30 years old.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><pmid>34745380</pmid><doi>10.1007/s13278-021-00832-1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7854-0109</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1869-5450
ispartof Social network analysis and mining, 2021-12, Vol.11 (1), p.112-112, Article 112
issn 1869-5450
1869-5469
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8558764
source International Bibliography of the Social Sciences (IBSS); Springer Nature; Social Science Premium Collection (Proquest) (PQ_SDU_P3)
subjects Accuracy
Acknowledgment
Applications of Graph Theory and Complex Networks
Artificial intelligence
Artificial neural networks
Computer Science
COVID-19 vaccines
Data Mining and Knowledge Discovery
Data sources
Digital media
Economics
Education
Face recognition
Game Theory
Humanities
Law
Methodology of the Social Sciences
Neural networks
Neurons
Original
Original Article
Pattern recognition
Social and Behav. Sciences
Social media
Social networks
Social studies
Sociodemographics
Statistics for Social Sciences
title Artificial neural networks applied for predicting and explaining the education level of Twitter users
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20networks%20applied%20for%20predicting%20and%20explaining%20the%20education%20level%20of%20Twitter%20users&rft.jtitle=Social%20network%20analysis%20and%20mining&rft.au=Florea,%20Alexandru%20Razvan&rft.date=2021-12-01&rft.volume=11&rft.issue=1&rft.spage=112&rft.epage=112&rft.pages=112-112&rft.artnum=112&rft.issn=1869-5450&rft.eissn=1869-5469&rft_id=info:doi/10.1007/s13278-021-00832-1&rft_dat=%3Cproquest_pubme%3E2920162945%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-14d0f2a9265b3f24da80145794e13fe1c79d7e3db8c4ef858f6fdf9ab2a582963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2920162945&rft_id=info:pmid/34745380&rfr_iscdi=true