Loading…

Identification of Hidden Population Structure in Time-Scaled Phylogenies

Population structure influences genealogical patterns, however, data pertaining to howpopulations are structured are often unavailable or not directly observable. Inference of population structure is highly important in molecular epidemiology where pathogen phylogenetics is increasingly used to infe...

Full description

Saved in:
Bibliographic Details
Published in:Systematic biology 2020-09, Vol.69 (5), p.884-896
Main Authors: VOLZ, ERIK M., WIUF, CARSTEN, GRAD, YONATAN H., FROST, SIMON D.W., DENNIS, ANN M., DIDELOT, XAVIER
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c446t-e0e6d2e042e83826e0d95731f3195baa96e54070f0c028e877e17e80aa564ea73
cites cdi_FETCH-LOGICAL-c446t-e0e6d2e042e83826e0d95731f3195baa96e54070f0c028e877e17e80aa564ea73
container_end_page 896
container_issue 5
container_start_page 884
container_title Systematic biology
container_volume 69
creator VOLZ, ERIK M.
WIUF, CARSTEN
GRAD, YONATAN H.
FROST, SIMON D.W.
DENNIS, ANN M.
DIDELOT, XAVIER
description Population structure influences genealogical patterns, however, data pertaining to howpopulations are structured are often unavailable or not directly observable. Inference of population structure is highly important in molecular epidemiology where pathogen phylogenetics is increasingly used to infer transmission patterns and detect outbreaks. Discrepancies between observed and idealized genealogies, such as those generated by the coalescent process, can be quantified, and where significant differences occur, may reveal the action of natural selection, host population structure, or other demographic and epidemiological heterogeneities. We have developed a fast non-parametric statistical test for detection of cryptic population structure in time-scaled phylogenetic trees. The test is based on contrasting estimated phylogenies with the theoretically expected phylodynamic ordering of common ancestors in two clades within a coalescent framework. These statistical tests have also motivated the development of algorithms which can be used to quickly screen a phylogenetic tree for clades which are likely to share a distinct demographic or epidemiological history. Epidemiological applications include identification of outbreaks in vulnerable host populations or rapid expansion of genotypes with a fitness advantage. To demonstrate the utility of these methods for outbreak detection, we applied the new methods to large phylogenies reconstructed from thousands of HIV-1 partial pol sequences. This revealed the presence of clades which had grown rapidly in the recent past andwas significantly concentrated in young men, suggesting recent and rapid transmission in that group. Furthermore, to demonstrate the utility of these methods for the study of antimicrobial resistance,we applied the new methods to a large phylogeny reconstructed from whole genome Neisseria gonorrhoeae sequences. We find that population structure detected using these methods closely overlaps with the appearance and expansion of mutations conferring antimicrobial resistance.
doi_str_mv 10.1093/sysbio/syaa009
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8559910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26939620</jstor_id><oup_id>10.1093/sysbio/syaa009</oup_id><sourcerecordid>26939620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-e0e6d2e042e83826e0d95731f3195baa96e54070f0c028e877e17e80aa564ea73</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMofl-9KT3qoTpJmqS5CCLqLiwoqOAtZNvpmqXbrEkr7H9vpeuiJ08zzPzmzeMRckLhkoLmV3EVp873xVoAvUX2KSiZ5ly-bX_3kqeCCrVHDmKcA1AqBd0le5xBpnkG-2Q0LrFpXeUK2zrfJL5KRq7sZ8mTX3b1MHxuQ1e0XcDENcmLW2D6XNgay-TpfVX7GTYO4xHZqWwd8XhdD8nr_d3L7SidPD6Mb28maZFlsk0RUJYMIWOY85xJhFILxWnFqRZTa7VEkYGCCgpgOeZKIVWYg7VCZmgVPyTXg-6ymy6wLHr3wdZmGdzChpXx1pm_m8a9m5n_NLkQWlPoBc7XAsF_dBhbs3CxwLq2DfouGsZFRpUUTPTo5YAWwccYsNq8oWC-4zdD_GYdf39w9tvcBv_JuwcuBsB3y__FTgd2HlsfNjSTmmvJgH8BFuycbg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354176525</pqid></control><display><type>article</type><title>Identification of Hidden Population Structure in Time-Scaled Phylogenies</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>VOLZ, ERIK M. ; WIUF, CARSTEN ; GRAD, YONATAN H. ; FROST, SIMON D.W. ; DENNIS, ANN M. ; DIDELOT, XAVIER</creator><contributor>Kubatko, Laura</contributor><creatorcontrib>VOLZ, ERIK M. ; WIUF, CARSTEN ; GRAD, YONATAN H. ; FROST, SIMON D.W. ; DENNIS, ANN M. ; DIDELOT, XAVIER ; Kubatko, Laura</creatorcontrib><description>Population structure influences genealogical patterns, however, data pertaining to howpopulations are structured are often unavailable or not directly observable. Inference of population structure is highly important in molecular epidemiology where pathogen phylogenetics is increasingly used to infer transmission patterns and detect outbreaks. Discrepancies between observed and idealized genealogies, such as those generated by the coalescent process, can be quantified, and where significant differences occur, may reveal the action of natural selection, host population structure, or other demographic and epidemiological heterogeneities. We have developed a fast non-parametric statistical test for detection of cryptic population structure in time-scaled phylogenetic trees. The test is based on contrasting estimated phylogenies with the theoretically expected phylodynamic ordering of common ancestors in two clades within a coalescent framework. These statistical tests have also motivated the development of algorithms which can be used to quickly screen a phylogenetic tree for clades which are likely to share a distinct demographic or epidemiological history. Epidemiological applications include identification of outbreaks in vulnerable host populations or rapid expansion of genotypes with a fitness advantage. To demonstrate the utility of these methods for outbreak detection, we applied the new methods to large phylogenies reconstructed from thousands of HIV-1 partial pol sequences. This revealed the presence of clades which had grown rapidly in the recent past andwas significantly concentrated in young men, suggesting recent and rapid transmission in that group. Furthermore, to demonstrate the utility of these methods for the study of antimicrobial resistance,we applied the new methods to a large phylogeny reconstructed from whole genome Neisseria gonorrhoeae sequences. We find that population structure detected using these methods closely overlaps with the appearance and expansion of mutations conferring antimicrobial resistance.</description><identifier>ISSN: 1063-5157</identifier><identifier>EISSN: 1076-836X</identifier><identifier>DOI: 10.1093/sysbio/syaa009</identifier><identifier>PMID: 32049340</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Drug Resistance, Bacterial - genetics ; Genome, Bacterial - genetics ; HIV-1 - classification ; HIV-1 - genetics ; Humans ; Male ; Molecular Epidemiology - methods ; Neisseria gonorrhoeae - classification ; Neisseria gonorrhoeae - drug effects ; Neisseria gonorrhoeae - genetics ; Phylogeny ; pol Gene Products, Human Immunodeficiency Virus - genetics ; Regular ; REGULAR ARTICLES ; Time</subject><ispartof>Systematic biology, 2020-09, Vol.69 (5), p.884-896</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.</rights><rights>The Author(s) 2020. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-e0e6d2e042e83826e0d95731f3195baa96e54070f0c028e877e17e80aa564ea73</citedby><cites>FETCH-LOGICAL-c446t-e0e6d2e042e83826e0d95731f3195baa96e54070f0c028e877e17e80aa564ea73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26939620$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26939620$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32049340$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kubatko, Laura</contributor><creatorcontrib>VOLZ, ERIK M.</creatorcontrib><creatorcontrib>WIUF, CARSTEN</creatorcontrib><creatorcontrib>GRAD, YONATAN H.</creatorcontrib><creatorcontrib>FROST, SIMON D.W.</creatorcontrib><creatorcontrib>DENNIS, ANN M.</creatorcontrib><creatorcontrib>DIDELOT, XAVIER</creatorcontrib><title>Identification of Hidden Population Structure in Time-Scaled Phylogenies</title><title>Systematic biology</title><addtitle>Syst Biol</addtitle><description>Population structure influences genealogical patterns, however, data pertaining to howpopulations are structured are often unavailable or not directly observable. Inference of population structure is highly important in molecular epidemiology where pathogen phylogenetics is increasingly used to infer transmission patterns and detect outbreaks. Discrepancies between observed and idealized genealogies, such as those generated by the coalescent process, can be quantified, and where significant differences occur, may reveal the action of natural selection, host population structure, or other demographic and epidemiological heterogeneities. We have developed a fast non-parametric statistical test for detection of cryptic population structure in time-scaled phylogenetic trees. The test is based on contrasting estimated phylogenies with the theoretically expected phylodynamic ordering of common ancestors in two clades within a coalescent framework. These statistical tests have also motivated the development of algorithms which can be used to quickly screen a phylogenetic tree for clades which are likely to share a distinct demographic or epidemiological history. Epidemiological applications include identification of outbreaks in vulnerable host populations or rapid expansion of genotypes with a fitness advantage. To demonstrate the utility of these methods for outbreak detection, we applied the new methods to large phylogenies reconstructed from thousands of HIV-1 partial pol sequences. This revealed the presence of clades which had grown rapidly in the recent past andwas significantly concentrated in young men, suggesting recent and rapid transmission in that group. Furthermore, to demonstrate the utility of these methods for the study of antimicrobial resistance,we applied the new methods to a large phylogeny reconstructed from whole genome Neisseria gonorrhoeae sequences. We find that population structure detected using these methods closely overlaps with the appearance and expansion of mutations conferring antimicrobial resistance.</description><subject>Drug Resistance, Bacterial - genetics</subject><subject>Genome, Bacterial - genetics</subject><subject>HIV-1 - classification</subject><subject>HIV-1 - genetics</subject><subject>Humans</subject><subject>Male</subject><subject>Molecular Epidemiology - methods</subject><subject>Neisseria gonorrhoeae - classification</subject><subject>Neisseria gonorrhoeae - drug effects</subject><subject>Neisseria gonorrhoeae - genetics</subject><subject>Phylogeny</subject><subject>pol Gene Products, Human Immunodeficiency Virus - genetics</subject><subject>Regular</subject><subject>REGULAR ARTICLES</subject><subject>Time</subject><issn>1063-5157</issn><issn>1076-836X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkM1LxDAQxYMofl-9KT3qoTpJmqS5CCLqLiwoqOAtZNvpmqXbrEkr7H9vpeuiJ08zzPzmzeMRckLhkoLmV3EVp873xVoAvUX2KSiZ5ly-bX_3kqeCCrVHDmKcA1AqBd0le5xBpnkG-2Q0LrFpXeUK2zrfJL5KRq7sZ8mTX3b1MHxuQ1e0XcDENcmLW2D6XNgay-TpfVX7GTYO4xHZqWwd8XhdD8nr_d3L7SidPD6Mb28maZFlsk0RUJYMIWOY85xJhFILxWnFqRZTa7VEkYGCCgpgOeZKIVWYg7VCZmgVPyTXg-6ymy6wLHr3wdZmGdzChpXx1pm_m8a9m5n_NLkQWlPoBc7XAsF_dBhbs3CxwLq2DfouGsZFRpUUTPTo5YAWwccYsNq8oWC-4zdD_GYdf39w9tvcBv_JuwcuBsB3y__FTgd2HlsfNjSTmmvJgH8BFuycbg</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>VOLZ, ERIK M.</creator><creator>WIUF, CARSTEN</creator><creator>GRAD, YONATAN H.</creator><creator>FROST, SIMON D.W.</creator><creator>DENNIS, ANN M.</creator><creator>DIDELOT, XAVIER</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200901</creationdate><title>Identification of Hidden Population Structure in Time-Scaled Phylogenies</title><author>VOLZ, ERIK M. ; WIUF, CARSTEN ; GRAD, YONATAN H. ; FROST, SIMON D.W. ; DENNIS, ANN M. ; DIDELOT, XAVIER</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-e0e6d2e042e83826e0d95731f3195baa96e54070f0c028e877e17e80aa564ea73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Drug Resistance, Bacterial - genetics</topic><topic>Genome, Bacterial - genetics</topic><topic>HIV-1 - classification</topic><topic>HIV-1 - genetics</topic><topic>Humans</topic><topic>Male</topic><topic>Molecular Epidemiology - methods</topic><topic>Neisseria gonorrhoeae - classification</topic><topic>Neisseria gonorrhoeae - drug effects</topic><topic>Neisseria gonorrhoeae - genetics</topic><topic>Phylogeny</topic><topic>pol Gene Products, Human Immunodeficiency Virus - genetics</topic><topic>Regular</topic><topic>REGULAR ARTICLES</topic><topic>Time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VOLZ, ERIK M.</creatorcontrib><creatorcontrib>WIUF, CARSTEN</creatorcontrib><creatorcontrib>GRAD, YONATAN H.</creatorcontrib><creatorcontrib>FROST, SIMON D.W.</creatorcontrib><creatorcontrib>DENNIS, ANN M.</creatorcontrib><creatorcontrib>DIDELOT, XAVIER</creatorcontrib><collection>Oxford Academic Journals (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Systematic biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VOLZ, ERIK M.</au><au>WIUF, CARSTEN</au><au>GRAD, YONATAN H.</au><au>FROST, SIMON D.W.</au><au>DENNIS, ANN M.</au><au>DIDELOT, XAVIER</au><au>Kubatko, Laura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Hidden Population Structure in Time-Scaled Phylogenies</atitle><jtitle>Systematic biology</jtitle><addtitle>Syst Biol</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>69</volume><issue>5</issue><spage>884</spage><epage>896</epage><pages>884-896</pages><issn>1063-5157</issn><eissn>1076-836X</eissn><abstract>Population structure influences genealogical patterns, however, data pertaining to howpopulations are structured are often unavailable or not directly observable. Inference of population structure is highly important in molecular epidemiology where pathogen phylogenetics is increasingly used to infer transmission patterns and detect outbreaks. Discrepancies between observed and idealized genealogies, such as those generated by the coalescent process, can be quantified, and where significant differences occur, may reveal the action of natural selection, host population structure, or other demographic and epidemiological heterogeneities. We have developed a fast non-parametric statistical test for detection of cryptic population structure in time-scaled phylogenetic trees. The test is based on contrasting estimated phylogenies with the theoretically expected phylodynamic ordering of common ancestors in two clades within a coalescent framework. These statistical tests have also motivated the development of algorithms which can be used to quickly screen a phylogenetic tree for clades which are likely to share a distinct demographic or epidemiological history. Epidemiological applications include identification of outbreaks in vulnerable host populations or rapid expansion of genotypes with a fitness advantage. To demonstrate the utility of these methods for outbreak detection, we applied the new methods to large phylogenies reconstructed from thousands of HIV-1 partial pol sequences. This revealed the presence of clades which had grown rapidly in the recent past andwas significantly concentrated in young men, suggesting recent and rapid transmission in that group. Furthermore, to demonstrate the utility of these methods for the study of antimicrobial resistance,we applied the new methods to a large phylogeny reconstructed from whole genome Neisseria gonorrhoeae sequences. We find that population structure detected using these methods closely overlaps with the appearance and expansion of mutations conferring antimicrobial resistance.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>32049340</pmid><doi>10.1093/sysbio/syaa009</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1063-5157
ispartof Systematic biology, 2020-09, Vol.69 (5), p.884-896
issn 1063-5157
1076-836X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8559910
source JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online
subjects Drug Resistance, Bacterial - genetics
Genome, Bacterial - genetics
HIV-1 - classification
HIV-1 - genetics
Humans
Male
Molecular Epidemiology - methods
Neisseria gonorrhoeae - classification
Neisseria gonorrhoeae - drug effects
Neisseria gonorrhoeae - genetics
Phylogeny
pol Gene Products, Human Immunodeficiency Virus - genetics
Regular
REGULAR ARTICLES
Time
title Identification of Hidden Population Structure in Time-Scaled Phylogenies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Hidden%20Population%20Structure%20in%20Time-Scaled%20Phylogenies&rft.jtitle=Systematic%20biology&rft.au=VOLZ,%20ERIK%20M.&rft.date=2020-09-01&rft.volume=69&rft.issue=5&rft.spage=884&rft.epage=896&rft.pages=884-896&rft.issn=1063-5157&rft.eissn=1076-836X&rft_id=info:doi/10.1093/sysbio/syaa009&rft_dat=%3Cjstor_pubme%3E26939620%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-e0e6d2e042e83826e0d95731f3195baa96e54070f0c028e877e17e80aa564ea73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2354176525&rft_id=info:pmid/32049340&rft_jstor_id=26939620&rft_oup_id=10.1093/sysbio/syaa009&rfr_iscdi=true