Loading…
The Innate Immune Glycoprotein Lactoferrin Represses the Helicobacter pylori cag Type IV Secretion System
Chronic infection with Helicobacter pylori increases risk of gastric diseases including gastric cancer. Despite development of a robust immune response, H. pylori persists in the gastric niche. Progression of gastric inflammation to serious disease outcomes is associated with infection with H. pylor...
Saved in:
Published in: | Chembiochem : a European journal of chemical biology 2021-09, Vol.22 (18), p.2783-2790 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4689-996266613eeb0efc4e21c3fbb166e25161815fda7fc4598baaf99f3c77ab2f63 |
---|---|
cites | cdi_FETCH-LOGICAL-c4689-996266613eeb0efc4e21c3fbb166e25161815fda7fc4598baaf99f3c77ab2f63 |
container_end_page | 2790 |
container_issue | 18 |
container_start_page | 2783 |
container_title | Chembiochem : a European journal of chemical biology |
container_volume | 22 |
creator | Lu, Jacky Haley, Kathryn P. Francis, Jamisha D. Guevara, Miriam A. Doster, Ryan S. Craft, Kelly M. Moore, Rebecca E. Chambers, Schuyler A. Delgado, Alberto G. Piazuelo, Maria Blanca Damo, Steven M. Townsend, Steven D. Gaddy, Jennifer A. |
description | Chronic infection with Helicobacter pylori increases risk of gastric diseases including gastric cancer. Despite development of a robust immune response, H. pylori persists in the gastric niche. Progression of gastric inflammation to serious disease outcomes is associated with infection with H. pylori strains which encode the cag Type IV Secretion System (cag T4SS). The cag T4SS is responsible for translocating the oncogenic protein CagA into host cells and inducing pro‐inflammatory and carcinogenic signaling cascades. Our previous work demonstrated that nutrient iron modulates the activity of the T4SS and biogenesis of T4SS pili. In response to H. pylori infection, the host produces a variety of antimicrobial molecules, including the iron‐binding glycoprotein, lactoferrin. Our work shows that apo‐lactoferrin exerts antimicrobial activity against H. pylori under iron‐limited conditions, while holo‐lactoferrin enhances bacterial growth. Culturing H. pylori in the presence of holo‐lactoferrin prior to co‐culture with gastric epithelial cells, results in repression of the cag T4SS activity. Concomitantly, a decrease in biogenesis of cag T4SS pili at the host‐pathogen interface was observed under these culture conditions by high‐resolution electron microscopy analyses. Taken together, these results indicate that acquisition of alternate sources of nutrient iron plays a role in regulating the pro‐inflammatory activity of a bacterial secretion system and present novel therapeutic targets for the treatment of H. pylori‐related disease.
Helicobacter pylori infection results in enhanced host production of lactoferrin which participates in nutritional immunity and can also serve as a source of nutrient iron for this pathogen, which can repress a major oncogenic virulence factor, the cag T4SS. |
doi_str_mv | 10.1002/cbic.202100249 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8560179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572188420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4689-996266613eeb0efc4e21c3fbb166e25161815fda7fc4598baaf99f3c77ab2f63</originalsourceid><addsrcrecordid>eNqFkUtLxDAUhYMovrcuJeB6xjzatNkIOvgYGBB0cBvSeKORtqlJR-m_N8OMo65c3RvOuV8OHIROKBlTQti5qZwZM8KWj0xuoX2acTkqBOfb6z1jrNhDBzG-EUKk4HQX7fGMCimY2Edu_gp42ra6T6NpFi3g23owvgu-B9fimTa9txBC2h-gCxAjRNynozuonfFV0iHgbqh9cNjoFzwfuoR6wo9gAvTOt_hxiD00R2jH6jrC8XoeovnN9XxyN5rd304nl7ORyUQpR3KZSwjKASoC1mTAqOG2qqgQwHIqaElz-6yLJOWyrLS2UlpuikJXzAp-iC5W2G5RNfBsoO2DrlUXXKPDoLx26q_Sulf14j9UmQtCC5kAZ2tA8O8LiL1684vQpsiK5QWjZZkxklzjlcsEH2MAu_mBErUsQy2bUZtm0sHp71wb-3cVySBXhk9Xw_APTk2uppMf-BcpcJzT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572188420</pqid></control><display><type>article</type><title>The Innate Immune Glycoprotein Lactoferrin Represses the Helicobacter pylori cag Type IV Secretion System</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Lu, Jacky ; Haley, Kathryn P. ; Francis, Jamisha D. ; Guevara, Miriam A. ; Doster, Ryan S. ; Craft, Kelly M. ; Moore, Rebecca E. ; Chambers, Schuyler A. ; Delgado, Alberto G. ; Piazuelo, Maria Blanca ; Damo, Steven M. ; Townsend, Steven D. ; Gaddy, Jennifer A.</creator><creatorcontrib>Lu, Jacky ; Haley, Kathryn P. ; Francis, Jamisha D. ; Guevara, Miriam A. ; Doster, Ryan S. ; Craft, Kelly M. ; Moore, Rebecca E. ; Chambers, Schuyler A. ; Delgado, Alberto G. ; Piazuelo, Maria Blanca ; Damo, Steven M. ; Townsend, Steven D. ; Gaddy, Jennifer A.</creatorcontrib><description>Chronic infection with Helicobacter pylori increases risk of gastric diseases including gastric cancer. Despite development of a robust immune response, H. pylori persists in the gastric niche. Progression of gastric inflammation to serious disease outcomes is associated with infection with H. pylori strains which encode the cag Type IV Secretion System (cag T4SS). The cag T4SS is responsible for translocating the oncogenic protein CagA into host cells and inducing pro‐inflammatory and carcinogenic signaling cascades. Our previous work demonstrated that nutrient iron modulates the activity of the T4SS and biogenesis of T4SS pili. In response to H. pylori infection, the host produces a variety of antimicrobial molecules, including the iron‐binding glycoprotein, lactoferrin. Our work shows that apo‐lactoferrin exerts antimicrobial activity against H. pylori under iron‐limited conditions, while holo‐lactoferrin enhances bacterial growth. Culturing H. pylori in the presence of holo‐lactoferrin prior to co‐culture with gastric epithelial cells, results in repression of the cag T4SS activity. Concomitantly, a decrease in biogenesis of cag T4SS pili at the host‐pathogen interface was observed under these culture conditions by high‐resolution electron microscopy analyses. Taken together, these results indicate that acquisition of alternate sources of nutrient iron plays a role in regulating the pro‐inflammatory activity of a bacterial secretion system and present novel therapeutic targets for the treatment of H. pylori‐related disease.
Helicobacter pylori infection results in enhanced host production of lactoferrin which participates in nutritional immunity and can also serve as a source of nutrient iron for this pathogen, which can repress a major oncogenic virulence factor, the cag T4SS.</description><identifier>ISSN: 1439-4227</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.202100249</identifier><identifier>PMID: 34169626</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Antiinfectives and antibacterials ; antimicrobial ; Antimicrobial activity ; Antimicrobial agents ; bacterial pathogenesis ; Biosynthesis ; Carcinogens ; Cell culture ; Chronic infection ; Disease Models, Animal ; Electron microscopy ; Epithelial cells ; Epithelial Cells - cytology ; Epithelial Cells - drug effects ; Epithelial Cells - metabolism ; Epithelium ; Gastric cancer ; Gastric Mucosa - cytology ; Gastric Mucosa - metabolism ; Gerbillinae ; glycobiology ; Glycoproteins ; Helicobacter Infections - drug therapy ; Helicobacter Infections - microbiology ; Helicobacter pylori ; Helicobacter pylori - drug effects ; Helicobacter pylori - metabolism ; host-pathogen interactions ; Immune response ; Immune system ; Immunity, Innate ; Infections ; Inflammation ; innate immunity ; Interleukin-8 - metabolism ; Iron ; Iron - metabolism ; iron homeostasis ; Lactoferrin ; Lactoferrin - chemistry ; Lactoferrin - metabolism ; Lactoferrin - pharmacology ; Lactoferrin - therapeutic use ; Nutrient sources ; Pili ; Protein Isoforms - chemistry ; Protein Isoforms - metabolism ; Protein Isoforms - pharmacology ; Protein Isoforms - therapeutic use ; toxin secretion ; Trinucleotide repeats ; Type IV Secretion Systems - antagonists & inhibitors ; Type IV Secretion Systems - metabolism ; virulence</subject><ispartof>Chembiochem : a European journal of chemical biology, 2021-09, Vol.22 (18), p.2783-2790</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4689-996266613eeb0efc4e21c3fbb166e25161815fda7fc4598baaf99f3c77ab2f63</citedby><cites>FETCH-LOGICAL-c4689-996266613eeb0efc4e21c3fbb166e25161815fda7fc4598baaf99f3c77ab2f63</cites><orcidid>0000-0002-2192-4224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34169626$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Jacky</creatorcontrib><creatorcontrib>Haley, Kathryn P.</creatorcontrib><creatorcontrib>Francis, Jamisha D.</creatorcontrib><creatorcontrib>Guevara, Miriam A.</creatorcontrib><creatorcontrib>Doster, Ryan S.</creatorcontrib><creatorcontrib>Craft, Kelly M.</creatorcontrib><creatorcontrib>Moore, Rebecca E.</creatorcontrib><creatorcontrib>Chambers, Schuyler A.</creatorcontrib><creatorcontrib>Delgado, Alberto G.</creatorcontrib><creatorcontrib>Piazuelo, Maria Blanca</creatorcontrib><creatorcontrib>Damo, Steven M.</creatorcontrib><creatorcontrib>Townsend, Steven D.</creatorcontrib><creatorcontrib>Gaddy, Jennifer A.</creatorcontrib><title>The Innate Immune Glycoprotein Lactoferrin Represses the Helicobacter pylori cag Type IV Secretion System</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>Chembiochem</addtitle><description>Chronic infection with Helicobacter pylori increases risk of gastric diseases including gastric cancer. Despite development of a robust immune response, H. pylori persists in the gastric niche. Progression of gastric inflammation to serious disease outcomes is associated with infection with H. pylori strains which encode the cag Type IV Secretion System (cag T4SS). The cag T4SS is responsible for translocating the oncogenic protein CagA into host cells and inducing pro‐inflammatory and carcinogenic signaling cascades. Our previous work demonstrated that nutrient iron modulates the activity of the T4SS and biogenesis of T4SS pili. In response to H. pylori infection, the host produces a variety of antimicrobial molecules, including the iron‐binding glycoprotein, lactoferrin. Our work shows that apo‐lactoferrin exerts antimicrobial activity against H. pylori under iron‐limited conditions, while holo‐lactoferrin enhances bacterial growth. Culturing H. pylori in the presence of holo‐lactoferrin prior to co‐culture with gastric epithelial cells, results in repression of the cag T4SS activity. Concomitantly, a decrease in biogenesis of cag T4SS pili at the host‐pathogen interface was observed under these culture conditions by high‐resolution electron microscopy analyses. Taken together, these results indicate that acquisition of alternate sources of nutrient iron plays a role in regulating the pro‐inflammatory activity of a bacterial secretion system and present novel therapeutic targets for the treatment of H. pylori‐related disease.
Helicobacter pylori infection results in enhanced host production of lactoferrin which participates in nutritional immunity and can also serve as a source of nutrient iron for this pathogen, which can repress a major oncogenic virulence factor, the cag T4SS.</description><subject>Animals</subject><subject>Antiinfectives and antibacterials</subject><subject>antimicrobial</subject><subject>Antimicrobial activity</subject><subject>Antimicrobial agents</subject><subject>bacterial pathogenesis</subject><subject>Biosynthesis</subject><subject>Carcinogens</subject><subject>Cell culture</subject><subject>Chronic infection</subject><subject>Disease Models, Animal</subject><subject>Electron microscopy</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - drug effects</subject><subject>Epithelial Cells - metabolism</subject><subject>Epithelium</subject><subject>Gastric cancer</subject><subject>Gastric Mucosa - cytology</subject><subject>Gastric Mucosa - metabolism</subject><subject>Gerbillinae</subject><subject>glycobiology</subject><subject>Glycoproteins</subject><subject>Helicobacter Infections - drug therapy</subject><subject>Helicobacter Infections - microbiology</subject><subject>Helicobacter pylori</subject><subject>Helicobacter pylori - drug effects</subject><subject>Helicobacter pylori - metabolism</subject><subject>host-pathogen interactions</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunity, Innate</subject><subject>Infections</subject><subject>Inflammation</subject><subject>innate immunity</subject><subject>Interleukin-8 - metabolism</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>iron homeostasis</subject><subject>Lactoferrin</subject><subject>Lactoferrin - chemistry</subject><subject>Lactoferrin - metabolism</subject><subject>Lactoferrin - pharmacology</subject><subject>Lactoferrin - therapeutic use</subject><subject>Nutrient sources</subject><subject>Pili</subject><subject>Protein Isoforms - chemistry</subject><subject>Protein Isoforms - metabolism</subject><subject>Protein Isoforms - pharmacology</subject><subject>Protein Isoforms - therapeutic use</subject><subject>toxin secretion</subject><subject>Trinucleotide repeats</subject><subject>Type IV Secretion Systems - antagonists & inhibitors</subject><subject>Type IV Secretion Systems - metabolism</subject><subject>virulence</subject><issn>1439-4227</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkUtLxDAUhYMovrcuJeB6xjzatNkIOvgYGBB0cBvSeKORtqlJR-m_N8OMo65c3RvOuV8OHIROKBlTQti5qZwZM8KWj0xuoX2acTkqBOfb6z1jrNhDBzG-EUKk4HQX7fGMCimY2Edu_gp42ra6T6NpFi3g23owvgu-B9fimTa9txBC2h-gCxAjRNynozuonfFV0iHgbqh9cNjoFzwfuoR6wo9gAvTOt_hxiD00R2jH6jrC8XoeovnN9XxyN5rd304nl7ORyUQpR3KZSwjKASoC1mTAqOG2qqgQwHIqaElz-6yLJOWyrLS2UlpuikJXzAp-iC5W2G5RNfBsoO2DrlUXXKPDoLx26q_Sulf14j9UmQtCC5kAZ2tA8O8LiL1684vQpsiK5QWjZZkxklzjlcsEH2MAu_mBErUsQy2bUZtm0sHp71wb-3cVySBXhk9Xw_APTk2uppMf-BcpcJzT</recordid><startdate>20210914</startdate><enddate>20210914</enddate><creator>Lu, Jacky</creator><creator>Haley, Kathryn P.</creator><creator>Francis, Jamisha D.</creator><creator>Guevara, Miriam A.</creator><creator>Doster, Ryan S.</creator><creator>Craft, Kelly M.</creator><creator>Moore, Rebecca E.</creator><creator>Chambers, Schuyler A.</creator><creator>Delgado, Alberto G.</creator><creator>Piazuelo, Maria Blanca</creator><creator>Damo, Steven M.</creator><creator>Townsend, Steven D.</creator><creator>Gaddy, Jennifer A.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2192-4224</orcidid></search><sort><creationdate>20210914</creationdate><title>The Innate Immune Glycoprotein Lactoferrin Represses the Helicobacter pylori cag Type IV Secretion System</title><author>Lu, Jacky ; Haley, Kathryn P. ; Francis, Jamisha D. ; Guevara, Miriam A. ; Doster, Ryan S. ; Craft, Kelly M. ; Moore, Rebecca E. ; Chambers, Schuyler A. ; Delgado, Alberto G. ; Piazuelo, Maria Blanca ; Damo, Steven M. ; Townsend, Steven D. ; Gaddy, Jennifer A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4689-996266613eeb0efc4e21c3fbb166e25161815fda7fc4598baaf99f3c77ab2f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Antiinfectives and antibacterials</topic><topic>antimicrobial</topic><topic>Antimicrobial activity</topic><topic>Antimicrobial agents</topic><topic>bacterial pathogenesis</topic><topic>Biosynthesis</topic><topic>Carcinogens</topic><topic>Cell culture</topic><topic>Chronic infection</topic><topic>Disease Models, Animal</topic><topic>Electron microscopy</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - drug effects</topic><topic>Epithelial Cells - metabolism</topic><topic>Epithelium</topic><topic>Gastric cancer</topic><topic>Gastric Mucosa - cytology</topic><topic>Gastric Mucosa - metabolism</topic><topic>Gerbillinae</topic><topic>glycobiology</topic><topic>Glycoproteins</topic><topic>Helicobacter Infections - drug therapy</topic><topic>Helicobacter Infections - microbiology</topic><topic>Helicobacter pylori</topic><topic>Helicobacter pylori - drug effects</topic><topic>Helicobacter pylori - metabolism</topic><topic>host-pathogen interactions</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunity, Innate</topic><topic>Infections</topic><topic>Inflammation</topic><topic>innate immunity</topic><topic>Interleukin-8 - metabolism</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>iron homeostasis</topic><topic>Lactoferrin</topic><topic>Lactoferrin - chemistry</topic><topic>Lactoferrin - metabolism</topic><topic>Lactoferrin - pharmacology</topic><topic>Lactoferrin - therapeutic use</topic><topic>Nutrient sources</topic><topic>Pili</topic><topic>Protein Isoforms - chemistry</topic><topic>Protein Isoforms - metabolism</topic><topic>Protein Isoforms - pharmacology</topic><topic>Protein Isoforms - therapeutic use</topic><topic>toxin secretion</topic><topic>Trinucleotide repeats</topic><topic>Type IV Secretion Systems - antagonists & inhibitors</topic><topic>Type IV Secretion Systems - metabolism</topic><topic>virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Jacky</creatorcontrib><creatorcontrib>Haley, Kathryn P.</creatorcontrib><creatorcontrib>Francis, Jamisha D.</creatorcontrib><creatorcontrib>Guevara, Miriam A.</creatorcontrib><creatorcontrib>Doster, Ryan S.</creatorcontrib><creatorcontrib>Craft, Kelly M.</creatorcontrib><creatorcontrib>Moore, Rebecca E.</creatorcontrib><creatorcontrib>Chambers, Schuyler A.</creatorcontrib><creatorcontrib>Delgado, Alberto G.</creatorcontrib><creatorcontrib>Piazuelo, Maria Blanca</creatorcontrib><creatorcontrib>Damo, Steven M.</creatorcontrib><creatorcontrib>Townsend, Steven D.</creatorcontrib><creatorcontrib>Gaddy, Jennifer A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Jacky</au><au>Haley, Kathryn P.</au><au>Francis, Jamisha D.</au><au>Guevara, Miriam A.</au><au>Doster, Ryan S.</au><au>Craft, Kelly M.</au><au>Moore, Rebecca E.</au><au>Chambers, Schuyler A.</au><au>Delgado, Alberto G.</au><au>Piazuelo, Maria Blanca</au><au>Damo, Steven M.</au><au>Townsend, Steven D.</au><au>Gaddy, Jennifer A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Innate Immune Glycoprotein Lactoferrin Represses the Helicobacter pylori cag Type IV Secretion System</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><addtitle>Chembiochem</addtitle><date>2021-09-14</date><risdate>2021</risdate><volume>22</volume><issue>18</issue><spage>2783</spage><epage>2790</epage><pages>2783-2790</pages><issn>1439-4227</issn><eissn>1439-7633</eissn><abstract>Chronic infection with Helicobacter pylori increases risk of gastric diseases including gastric cancer. Despite development of a robust immune response, H. pylori persists in the gastric niche. Progression of gastric inflammation to serious disease outcomes is associated with infection with H. pylori strains which encode the cag Type IV Secretion System (cag T4SS). The cag T4SS is responsible for translocating the oncogenic protein CagA into host cells and inducing pro‐inflammatory and carcinogenic signaling cascades. Our previous work demonstrated that nutrient iron modulates the activity of the T4SS and biogenesis of T4SS pili. In response to H. pylori infection, the host produces a variety of antimicrobial molecules, including the iron‐binding glycoprotein, lactoferrin. Our work shows that apo‐lactoferrin exerts antimicrobial activity against H. pylori under iron‐limited conditions, while holo‐lactoferrin enhances bacterial growth. Culturing H. pylori in the presence of holo‐lactoferrin prior to co‐culture with gastric epithelial cells, results in repression of the cag T4SS activity. Concomitantly, a decrease in biogenesis of cag T4SS pili at the host‐pathogen interface was observed under these culture conditions by high‐resolution electron microscopy analyses. Taken together, these results indicate that acquisition of alternate sources of nutrient iron plays a role in regulating the pro‐inflammatory activity of a bacterial secretion system and present novel therapeutic targets for the treatment of H. pylori‐related disease.
Helicobacter pylori infection results in enhanced host production of lactoferrin which participates in nutritional immunity and can also serve as a source of nutrient iron for this pathogen, which can repress a major oncogenic virulence factor, the cag T4SS.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34169626</pmid><doi>10.1002/cbic.202100249</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2192-4224</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4227 |
ispartof | Chembiochem : a European journal of chemical biology, 2021-09, Vol.22 (18), p.2783-2790 |
issn | 1439-4227 1439-7633 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8560179 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Animals Antiinfectives and antibacterials antimicrobial Antimicrobial activity Antimicrobial agents bacterial pathogenesis Biosynthesis Carcinogens Cell culture Chronic infection Disease Models, Animal Electron microscopy Epithelial cells Epithelial Cells - cytology Epithelial Cells - drug effects Epithelial Cells - metabolism Epithelium Gastric cancer Gastric Mucosa - cytology Gastric Mucosa - metabolism Gerbillinae glycobiology Glycoproteins Helicobacter Infections - drug therapy Helicobacter Infections - microbiology Helicobacter pylori Helicobacter pylori - drug effects Helicobacter pylori - metabolism host-pathogen interactions Immune response Immune system Immunity, Innate Infections Inflammation innate immunity Interleukin-8 - metabolism Iron Iron - metabolism iron homeostasis Lactoferrin Lactoferrin - chemistry Lactoferrin - metabolism Lactoferrin - pharmacology Lactoferrin - therapeutic use Nutrient sources Pili Protein Isoforms - chemistry Protein Isoforms - metabolism Protein Isoforms - pharmacology Protein Isoforms - therapeutic use toxin secretion Trinucleotide repeats Type IV Secretion Systems - antagonists & inhibitors Type IV Secretion Systems - metabolism virulence |
title | The Innate Immune Glycoprotein Lactoferrin Represses the Helicobacter pylori cag Type IV Secretion System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Innate%20Immune%20Glycoprotein%20Lactoferrin%20Represses%20the%20Helicobacter%20pylori%20cag%20Type%20IV%20Secretion%20System&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Lu,%20Jacky&rft.date=2021-09-14&rft.volume=22&rft.issue=18&rft.spage=2783&rft.epage=2790&rft.pages=2783-2790&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.202100249&rft_dat=%3Cproquest_pubme%3E2572188420%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4689-996266613eeb0efc4e21c3fbb166e25161815fda7fc4598baaf99f3c77ab2f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2572188420&rft_id=info:pmid/34169626&rfr_iscdi=true |