Loading…

Screening by deep sequencing reveals mediators of microRNA tailing in C. elegans

Abstract microRNAs are frequently modified by addition of untemplated nucleotides to the 3′ end, but the role of this tailing is often unclear. Here we characterize the prevalence and functional consequences of microRNA tailing in vivo, using Caenorhabditis elegans. MicroRNA tailing in C. elegans co...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2021-11, Vol.49 (19), p.11167-11180
Main Authors: Vieux, Karl-Frédéric, Prothro, Katherine P, Kelley, Leanne H, Palmer, Cameron, Maine, Eleanor M, Veksler-Lublinsky, Isana, McJunkin, Katherine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-2591873c5f6d2a971778c6ce34c9d8113daf5c0bb5b067781fb95d2315634a443
cites cdi_FETCH-LOGICAL-c412t-2591873c5f6d2a971778c6ce34c9d8113daf5c0bb5b067781fb95d2315634a443
container_end_page 11180
container_issue 19
container_start_page 11167
container_title Nucleic acids research
container_volume 49
creator Vieux, Karl-Frédéric
Prothro, Katherine P
Kelley, Leanne H
Palmer, Cameron
Maine, Eleanor M
Veksler-Lublinsky, Isana
McJunkin, Katherine
description Abstract microRNAs are frequently modified by addition of untemplated nucleotides to the 3′ end, but the role of this tailing is often unclear. Here we characterize the prevalence and functional consequences of microRNA tailing in vivo, using Caenorhabditis elegans. MicroRNA tailing in C. elegans consists mostly of mono-uridylation of mature microRNA species, with rarer mono-adenylation which is likely added to microRNA precursors. Through a targeted RNAi screen, we discover that the TUT4/TUT7 gene family member CID-1/CDE-1/PUP-1 is required for uridylation, whereas the GLD2 gene family member F31C3.2—here named GLD-2-related 2 (GLDR-2)—is required for adenylation. Thus, the TUT4/TUT7 and GLD2 gene families have broadly conserved roles in miRNA modification. We specifically examine the role of tailing in microRNA turnover. We determine half-lives of microRNAs after acute inactivation of microRNA biogenesis, revealing that half-lives are generally long (median = 20.7 h), as observed in other systems. Although we observe that the proportion of tailed species increases over time after biogenesis, disrupting tailing does not alter microRNA decay. Thus, tailing is not a global regulator of decay in C. elegans. Nonetheless, by identifying the responsible enzymes, this study lays the groundwork to explore whether tailing plays more specialized context- or miRNA-specific regulatory roles.
doi_str_mv 10.1093/nar/gkab840
format article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8565341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkab840</oup_id><sourcerecordid>2577735552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-2591873c5f6d2a971778c6ce34c9d8113daf5c0bb5b067781fb95d2315634a443</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMotlZX7iUrEWTaZJLMYyOU4guKio91yGTu1Og0U5OZQv-9Ka1FN65uuOfLyb05CJ1SMqQkZyOr3Gj2qYqMkz3UpyyJI54n8T7qE0ZERAnPeujI-w9CKKeCH6Ie4yJLwrmPnl60A7DGznCxwiXAAnv46sDqdcvBElTt8RxKo9rGedxUeG60a54fxrhVpl5TxuLJEEMNM2X9MTqowhU42dYBeru5fp3cRdPH2_vJeBppTuM2ikVOs5RpUSVlrPKUpmmmEw2M67zMKGWlqoQmRSEKkgSNVkUuyphRkTCuOGcDdLXxXXRFGE-DbZ2q5cKZuXIr2Sgj_yrWvMtZs5SZSATjNBhcbA1cExb2rZwbr6GulYWm8zIWaZoyIUQc0MsNGhb33kG1e4YSuc5AhgzkNoNAn_2ebMf-fHoAzjdA0y3-dfoGqhmQig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577735552</pqid></control><display><type>article</type><title>Screening by deep sequencing reveals mediators of microRNA tailing in C. elegans</title><source>Oxford Open</source><creator>Vieux, Karl-Frédéric ; Prothro, Katherine P ; Kelley, Leanne H ; Palmer, Cameron ; Maine, Eleanor M ; Veksler-Lublinsky, Isana ; McJunkin, Katherine</creator><creatorcontrib>Vieux, Karl-Frédéric ; Prothro, Katherine P ; Kelley, Leanne H ; Palmer, Cameron ; Maine, Eleanor M ; Veksler-Lublinsky, Isana ; McJunkin, Katherine</creatorcontrib><description>Abstract microRNAs are frequently modified by addition of untemplated nucleotides to the 3′ end, but the role of this tailing is often unclear. Here we characterize the prevalence and functional consequences of microRNA tailing in vivo, using Caenorhabditis elegans. MicroRNA tailing in C. elegans consists mostly of mono-uridylation of mature microRNA species, with rarer mono-adenylation which is likely added to microRNA precursors. Through a targeted RNAi screen, we discover that the TUT4/TUT7 gene family member CID-1/CDE-1/PUP-1 is required for uridylation, whereas the GLD2 gene family member F31C3.2—here named GLD-2-related 2 (GLDR-2)—is required for adenylation. Thus, the TUT4/TUT7 and GLD2 gene families have broadly conserved roles in miRNA modification. We specifically examine the role of tailing in microRNA turnover. We determine half-lives of microRNAs after acute inactivation of microRNA biogenesis, revealing that half-lives are generally long (median = 20.7 h), as observed in other systems. Although we observe that the proportion of tailed species increases over time after biogenesis, disrupting tailing does not alter microRNA decay. Thus, tailing is not a global regulator of decay in C. elegans. Nonetheless, by identifying the responsible enzymes, this study lays the groundwork to explore whether tailing plays more specialized context- or miRNA-specific regulatory roles.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkab840</identifier><identifier>PMID: 34586415</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Adenosine Monophosphate - metabolism ; Animals ; Caenorhabditis elegans - classification ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Chickens - classification ; Chickens - genetics ; Chickens - metabolism ; Conserved Sequence ; Gene Expression Regulation ; Genome, Helminth ; Half-Life ; Humans ; Mice ; MicroRNAs - antagonists &amp; inhibitors ; MicroRNAs - classification ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Molecular Biology ; Phylogeny ; RNA Interference ; RNA Stability ; RNA, Helminth - classification ; RNA, Helminth - genetics ; RNA, Helminth - metabolism ; Species Specificity ; Uridine Monophosphate - metabolism ; Zebrafish - classification ; Zebrafish - genetics ; Zebrafish - metabolism</subject><ispartof>Nucleic acids research, 2021-11, Vol.49 (19), p.11167-11180</ispartof><rights>Published by Oxford University Press on behalf of Nucleic Acids Research 2021. 2021</rights><rights>Published by Oxford University Press on behalf of Nucleic Acids Research 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-2591873c5f6d2a971778c6ce34c9d8113daf5c0bb5b067781fb95d2315634a443</citedby><cites>FETCH-LOGICAL-c412t-2591873c5f6d2a971778c6ce34c9d8113daf5c0bb5b067781fb95d2315634a443</cites><orcidid>0000-0001-9730-442X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8565341/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8565341/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/nar/gkab840$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34586415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vieux, Karl-Frédéric</creatorcontrib><creatorcontrib>Prothro, Katherine P</creatorcontrib><creatorcontrib>Kelley, Leanne H</creatorcontrib><creatorcontrib>Palmer, Cameron</creatorcontrib><creatorcontrib>Maine, Eleanor M</creatorcontrib><creatorcontrib>Veksler-Lublinsky, Isana</creatorcontrib><creatorcontrib>McJunkin, Katherine</creatorcontrib><title>Screening by deep sequencing reveals mediators of microRNA tailing in C. elegans</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract microRNAs are frequently modified by addition of untemplated nucleotides to the 3′ end, but the role of this tailing is often unclear. Here we characterize the prevalence and functional consequences of microRNA tailing in vivo, using Caenorhabditis elegans. MicroRNA tailing in C. elegans consists mostly of mono-uridylation of mature microRNA species, with rarer mono-adenylation which is likely added to microRNA precursors. Through a targeted RNAi screen, we discover that the TUT4/TUT7 gene family member CID-1/CDE-1/PUP-1 is required for uridylation, whereas the GLD2 gene family member F31C3.2—here named GLD-2-related 2 (GLDR-2)—is required for adenylation. Thus, the TUT4/TUT7 and GLD2 gene families have broadly conserved roles in miRNA modification. We specifically examine the role of tailing in microRNA turnover. We determine half-lives of microRNAs after acute inactivation of microRNA biogenesis, revealing that half-lives are generally long (median = 20.7 h), as observed in other systems. Although we observe that the proportion of tailed species increases over time after biogenesis, disrupting tailing does not alter microRNA decay. Thus, tailing is not a global regulator of decay in C. elegans. Nonetheless, by identifying the responsible enzymes, this study lays the groundwork to explore whether tailing plays more specialized context- or miRNA-specific regulatory roles.</description><subject>Adenosine Monophosphate - metabolism</subject><subject>Animals</subject><subject>Caenorhabditis elegans - classification</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Chickens - classification</subject><subject>Chickens - genetics</subject><subject>Chickens - metabolism</subject><subject>Conserved Sequence</subject><subject>Gene Expression Regulation</subject><subject>Genome, Helminth</subject><subject>Half-Life</subject><subject>Humans</subject><subject>Mice</subject><subject>MicroRNAs - antagonists &amp; inhibitors</subject><subject>MicroRNAs - classification</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Molecular Biology</subject><subject>Phylogeny</subject><subject>RNA Interference</subject><subject>RNA Stability</subject><subject>RNA, Helminth - classification</subject><subject>RNA, Helminth - genetics</subject><subject>RNA, Helminth - metabolism</subject><subject>Species Specificity</subject><subject>Uridine Monophosphate - metabolism</subject><subject>Zebrafish - classification</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLAzEUhYMotlZX7iUrEWTaZJLMYyOU4guKio91yGTu1Og0U5OZQv-9Ka1FN65uuOfLyb05CJ1SMqQkZyOr3Gj2qYqMkz3UpyyJI54n8T7qE0ZERAnPeujI-w9CKKeCH6Ie4yJLwrmPnl60A7DGznCxwiXAAnv46sDqdcvBElTt8RxKo9rGedxUeG60a54fxrhVpl5TxuLJEEMNM2X9MTqowhU42dYBeru5fp3cRdPH2_vJeBppTuM2ikVOs5RpUSVlrPKUpmmmEw2M67zMKGWlqoQmRSEKkgSNVkUuyphRkTCuOGcDdLXxXXRFGE-DbZ2q5cKZuXIr2Sgj_yrWvMtZs5SZSATjNBhcbA1cExb2rZwbr6GulYWm8zIWaZoyIUQc0MsNGhb33kG1e4YSuc5AhgzkNoNAn_2ebMf-fHoAzjdA0y3-dfoGqhmQig</recordid><startdate>20211108</startdate><enddate>20211108</enddate><creator>Vieux, Karl-Frédéric</creator><creator>Prothro, Katherine P</creator><creator>Kelley, Leanne H</creator><creator>Palmer, Cameron</creator><creator>Maine, Eleanor M</creator><creator>Veksler-Lublinsky, Isana</creator><creator>McJunkin, Katherine</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9730-442X</orcidid></search><sort><creationdate>20211108</creationdate><title>Screening by deep sequencing reveals mediators of microRNA tailing in C. elegans</title><author>Vieux, Karl-Frédéric ; Prothro, Katherine P ; Kelley, Leanne H ; Palmer, Cameron ; Maine, Eleanor M ; Veksler-Lublinsky, Isana ; McJunkin, Katherine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-2591873c5f6d2a971778c6ce34c9d8113daf5c0bb5b067781fb95d2315634a443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenosine Monophosphate - metabolism</topic><topic>Animals</topic><topic>Caenorhabditis elegans - classification</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Chickens - classification</topic><topic>Chickens - genetics</topic><topic>Chickens - metabolism</topic><topic>Conserved Sequence</topic><topic>Gene Expression Regulation</topic><topic>Genome, Helminth</topic><topic>Half-Life</topic><topic>Humans</topic><topic>Mice</topic><topic>MicroRNAs - antagonists &amp; inhibitors</topic><topic>MicroRNAs - classification</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Molecular Biology</topic><topic>Phylogeny</topic><topic>RNA Interference</topic><topic>RNA Stability</topic><topic>RNA, Helminth - classification</topic><topic>RNA, Helminth - genetics</topic><topic>RNA, Helminth - metabolism</topic><topic>Species Specificity</topic><topic>Uridine Monophosphate - metabolism</topic><topic>Zebrafish - classification</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vieux, Karl-Frédéric</creatorcontrib><creatorcontrib>Prothro, Katherine P</creatorcontrib><creatorcontrib>Kelley, Leanne H</creatorcontrib><creatorcontrib>Palmer, Cameron</creatorcontrib><creatorcontrib>Maine, Eleanor M</creatorcontrib><creatorcontrib>Veksler-Lublinsky, Isana</creatorcontrib><creatorcontrib>McJunkin, Katherine</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vieux, Karl-Frédéric</au><au>Prothro, Katherine P</au><au>Kelley, Leanne H</au><au>Palmer, Cameron</au><au>Maine, Eleanor M</au><au>Veksler-Lublinsky, Isana</au><au>McJunkin, Katherine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Screening by deep sequencing reveals mediators of microRNA tailing in C. elegans</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2021-11-08</date><risdate>2021</risdate><volume>49</volume><issue>19</issue><spage>11167</spage><epage>11180</epage><pages>11167-11180</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract microRNAs are frequently modified by addition of untemplated nucleotides to the 3′ end, but the role of this tailing is often unclear. Here we characterize the prevalence and functional consequences of microRNA tailing in vivo, using Caenorhabditis elegans. MicroRNA tailing in C. elegans consists mostly of mono-uridylation of mature microRNA species, with rarer mono-adenylation which is likely added to microRNA precursors. Through a targeted RNAi screen, we discover that the TUT4/TUT7 gene family member CID-1/CDE-1/PUP-1 is required for uridylation, whereas the GLD2 gene family member F31C3.2—here named GLD-2-related 2 (GLDR-2)—is required for adenylation. Thus, the TUT4/TUT7 and GLD2 gene families have broadly conserved roles in miRNA modification. We specifically examine the role of tailing in microRNA turnover. We determine half-lives of microRNAs after acute inactivation of microRNA biogenesis, revealing that half-lives are generally long (median = 20.7 h), as observed in other systems. Although we observe that the proportion of tailed species increases over time after biogenesis, disrupting tailing does not alter microRNA decay. Thus, tailing is not a global regulator of decay in C. elegans. Nonetheless, by identifying the responsible enzymes, this study lays the groundwork to explore whether tailing plays more specialized context- or miRNA-specific regulatory roles.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>34586415</pmid><doi>10.1093/nar/gkab840</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9730-442X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2021-11, Vol.49 (19), p.11167-11180
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8565341
source Oxford Open
subjects Adenosine Monophosphate - metabolism
Animals
Caenorhabditis elegans - classification
Caenorhabditis elegans - genetics
Caenorhabditis elegans - metabolism
Caenorhabditis elegans Proteins - genetics
Caenorhabditis elegans Proteins - metabolism
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Chickens - classification
Chickens - genetics
Chickens - metabolism
Conserved Sequence
Gene Expression Regulation
Genome, Helminth
Half-Life
Humans
Mice
MicroRNAs - antagonists & inhibitors
MicroRNAs - classification
MicroRNAs - genetics
MicroRNAs - metabolism
Molecular Biology
Phylogeny
RNA Interference
RNA Stability
RNA, Helminth - classification
RNA, Helminth - genetics
RNA, Helminth - metabolism
Species Specificity
Uridine Monophosphate - metabolism
Zebrafish - classification
Zebrafish - genetics
Zebrafish - metabolism
title Screening by deep sequencing reveals mediators of microRNA tailing in C. elegans
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A14%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Screening%20by%20deep%20sequencing%20reveals%20mediators%20of%20microRNA%20tailing%20in%20C.%20elegans&rft.jtitle=Nucleic%20acids%20research&rft.au=Vieux,%20Karl-Fr%C3%A9d%C3%A9ric&rft.date=2021-11-08&rft.volume=49&rft.issue=19&rft.spage=11167&rft.epage=11180&rft.pages=11167-11180&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkab840&rft_dat=%3Cproquest_TOX%3E2577735552%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-2591873c5f6d2a971778c6ce34c9d8113daf5c0bb5b067781fb95d2315634a443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2577735552&rft_id=info:pmid/34586415&rft_oup_id=10.1093/nar/gkab840&rfr_iscdi=true