Loading…

Wild emmer introgression alters root-to-shoot growth dynamics in durum wheat in response to water stress

Water deficit during the early vegetative growth stages of wheat (Triticum) can limit shoot growth and ultimately impact grain productivity. Introducing diversity in wheat cultivars to enhance the range of phenotypic responses to water limitations during vegetative growth can provide potential avenu...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2021-11, Vol.187 (3), p.1149-1162
Main Authors: Bacher, Harel, Zhu, Feiyu, Gao, Tian, Liu, Kan, Dhatt, Balpreet K, Awada, Tala, Zhang, Chi, Distelfeld, Assaf, Yu, Hongfeng, Peleg, Zvi, Walia, Harkamal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Water deficit during the early vegetative growth stages of wheat (Triticum) can limit shoot growth and ultimately impact grain productivity. Introducing diversity in wheat cultivars to enhance the range of phenotypic responses to water limitations during vegetative growth can provide potential avenues for mitigating subsequent yield losses. We tested this hypothesis in an elite durum wheat background by introducing a series of introgressions from a wild emmer (Triticum turgidum ssp. dicoccoides) wheat. Wild emmer populations harbor rich phenotypic diversity for drought-adaptive traits. To determine the effect of these introgressions on vegetative growth under water-limited conditions, we used image-based phenotyping to catalog divergent growth responses to water stress ranging from high plasticity to high stability. One of the introgression lines exhibited a significant shift in root-to-shoot ratio in response to water stress. We characterized this shift by combining genetic analysis and root transcriptome profiling to identify candidate genes (including a root-specific kinase) that may be linked to the root-to-shoot carbon reallocation under water stress. Our results highlight the potential of introducing functional diversity into elite durum wheat for enhancing the range of water stress adaptation.
ISSN:0032-0889
1532-2548
DOI:10.1093/plphys/kiab292