Loading…
A Reliable Fracture Angle Determination Algorithm for Extended Puck’s 3D Inter-Fiber Failure Criterion for Unidirectional Composites
Determination of the fracture angle and maximum exposure value of extended Puck’s 3D inter-fiber failure (IFF) criterion is of great importance for predicting the failure mechanism of unidirectional fiber-reinforced composites. In this paper, a reliable semi-analytical algorithm (RSAA) is presented...
Saved in:
Published in: | Materials 2021-10, Vol.14 (21), p.6325 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-96140cf01c4efb5c01a56d81a6eece73d3be5657df577785aafe7ba0de8826833 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-96140cf01c4efb5c01a56d81a6eece73d3be5657df577785aafe7ba0de8826833 |
container_end_page | |
container_issue | 21 |
container_start_page | 6325 |
container_title | Materials |
container_volume | 14 |
creator | Gong, Yaohua Huang, Tao Zhang, Xun’an Jia, Purong Suo, Yongyong Zhao, Shuyi |
description | Determination of the fracture angle and maximum exposure value of extended Puck’s 3D inter-fiber failure (IFF) criterion is of great importance for predicting the failure mechanism of unidirectional fiber-reinforced composites. In this paper, a reliable semi-analytical algorithm (RSAA) is presented for searching fracture angle and corresponding exposure value for the extended Puck’s failure criterion. One hundred million cases are tested for verifying the accuracy of the present and other algorithms on Python using the strength-value-stress-state combinations more universal than those in previous literatures. The reliability of previous algorithms is discussed and counterexamples are provided for illustration. The statistical results show RSAA is adequate for implementation in extended Puck’s criterion and much more reliable than previous algorithms. RSAA can correctly predict the results with a probability of over 99.999%. |
doi_str_mv | 10.3390/ma14216325 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8585166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596055709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-96140cf01c4efb5c01a56d81a6eece73d3be5657df577785aafe7ba0de8826833</originalsourceid><addsrcrecordid>eNpdkc1qFTEUx4MottRufIKAGxFGk8nkayNcbnu1UFDErkMmc-Y2NZNckxnRnSvfwdfzSczY4lc2Scjv_yPnHIQeU_KcMU1eTJZ2LRWs5ffQMdVaNFR33f2_zkfotJQbUhdjVLX6ITpinZRUcXqMvm3wOwje9gHwLls3LxnwJu7r9QxmyJOPdvYp4k3Yp-zn6wmPKePzzzPEAQb8dnEffnz9XjA7wxexBpqd7yHjnfVhVW1rBvIqWGNX0Q8-g1uNNuBtmg6pVKA8Qg9GGwqc3u0n6Gp3_n77url88-piu7lsHFNsbrSgHXEjoa6DseeOUMvFoKgVAA4kG1gPXHA5jFxKqbi1I8jekgGUaoVi7AS9vPUeln6CwUGcsw3mkP1k8xeTrDf_vkR_bfbpk1G8tkuIKnh6J8jp4wJlNpMvDkKwEdJSTMu17HSnKK3ok__Qm7TkWvcvShDOJdGVenZLuZxKyTD-_gwlZp2w-TNh9hM4pJoO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596055709</pqid></control><display><type>article</type><title>A Reliable Fracture Angle Determination Algorithm for Extended Puck’s 3D Inter-Fiber Failure Criterion for Unidirectional Composites</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Gong, Yaohua ; Huang, Tao ; Zhang, Xun’an ; Jia, Purong ; Suo, Yongyong ; Zhao, Shuyi</creator><creatorcontrib>Gong, Yaohua ; Huang, Tao ; Zhang, Xun’an ; Jia, Purong ; Suo, Yongyong ; Zhao, Shuyi</creatorcontrib><description>Determination of the fracture angle and maximum exposure value of extended Puck’s 3D inter-fiber failure (IFF) criterion is of great importance for predicting the failure mechanism of unidirectional fiber-reinforced composites. In this paper, a reliable semi-analytical algorithm (RSAA) is presented for searching fracture angle and corresponding exposure value for the extended Puck’s failure criterion. One hundred million cases are tested for verifying the accuracy of the present and other algorithms on Python using the strength-value-stress-state combinations more universal than those in previous literatures. The reliability of previous algorithms is discussed and counterexamples are provided for illustration. The statistical results show RSAA is adequate for implementation in extended Puck’s criterion and much more reliable than previous algorithms. RSAA can correctly predict the results with a probability of over 99.999%.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14216325</identifier><identifier>PMID: 34771851</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Approximation ; Composite materials ; Criteria ; Failure mechanisms ; Fiber composites ; Shear strength ; Shear stress ; Statistical analysis ; Unidirectional composites</subject><ispartof>Materials, 2021-10, Vol.14 (21), p.6325</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-96140cf01c4efb5c01a56d81a6eece73d3be5657df577785aafe7ba0de8826833</citedby><cites>FETCH-LOGICAL-c383t-96140cf01c4efb5c01a56d81a6eece73d3be5657df577785aafe7ba0de8826833</cites><orcidid>0000-0002-6134-6940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2596055709/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2596055709?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Gong, Yaohua</creatorcontrib><creatorcontrib>Huang, Tao</creatorcontrib><creatorcontrib>Zhang, Xun’an</creatorcontrib><creatorcontrib>Jia, Purong</creatorcontrib><creatorcontrib>Suo, Yongyong</creatorcontrib><creatorcontrib>Zhao, Shuyi</creatorcontrib><title>A Reliable Fracture Angle Determination Algorithm for Extended Puck’s 3D Inter-Fiber Failure Criterion for Unidirectional Composites</title><title>Materials</title><description>Determination of the fracture angle and maximum exposure value of extended Puck’s 3D inter-fiber failure (IFF) criterion is of great importance for predicting the failure mechanism of unidirectional fiber-reinforced composites. In this paper, a reliable semi-analytical algorithm (RSAA) is presented for searching fracture angle and corresponding exposure value for the extended Puck’s failure criterion. One hundred million cases are tested for verifying the accuracy of the present and other algorithms on Python using the strength-value-stress-state combinations more universal than those in previous literatures. The reliability of previous algorithms is discussed and counterexamples are provided for illustration. The statistical results show RSAA is adequate for implementation in extended Puck’s criterion and much more reliable than previous algorithms. RSAA can correctly predict the results with a probability of over 99.999%.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Composite materials</subject><subject>Criteria</subject><subject>Failure mechanisms</subject><subject>Fiber composites</subject><subject>Shear strength</subject><subject>Shear stress</subject><subject>Statistical analysis</subject><subject>Unidirectional composites</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkc1qFTEUx4MottRufIKAGxFGk8nkayNcbnu1UFDErkMmc-Y2NZNckxnRnSvfwdfzSczY4lc2Scjv_yPnHIQeU_KcMU1eTJZ2LRWs5ffQMdVaNFR33f2_zkfotJQbUhdjVLX6ITpinZRUcXqMvm3wOwje9gHwLls3LxnwJu7r9QxmyJOPdvYp4k3Yp-zn6wmPKePzzzPEAQb8dnEffnz9XjA7wxexBpqd7yHjnfVhVW1rBvIqWGNX0Q8-g1uNNuBtmg6pVKA8Qg9GGwqc3u0n6Gp3_n77url88-piu7lsHFNsbrSgHXEjoa6DseeOUMvFoKgVAA4kG1gPXHA5jFxKqbi1I8jekgGUaoVi7AS9vPUeln6CwUGcsw3mkP1k8xeTrDf_vkR_bfbpk1G8tkuIKnh6J8jp4wJlNpMvDkKwEdJSTMu17HSnKK3ok__Qm7TkWvcvShDOJdGVenZLuZxKyTD-_gwlZp2w-TNh9hM4pJoO</recordid><startdate>20211023</startdate><enddate>20211023</enddate><creator>Gong, Yaohua</creator><creator>Huang, Tao</creator><creator>Zhang, Xun’an</creator><creator>Jia, Purong</creator><creator>Suo, Yongyong</creator><creator>Zhao, Shuyi</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6134-6940</orcidid></search><sort><creationdate>20211023</creationdate><title>A Reliable Fracture Angle Determination Algorithm for Extended Puck’s 3D Inter-Fiber Failure Criterion for Unidirectional Composites</title><author>Gong, Yaohua ; Huang, Tao ; Zhang, Xun’an ; Jia, Purong ; Suo, Yongyong ; Zhao, Shuyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-96140cf01c4efb5c01a56d81a6eece73d3be5657df577785aafe7ba0de8826833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Composite materials</topic><topic>Criteria</topic><topic>Failure mechanisms</topic><topic>Fiber composites</topic><topic>Shear strength</topic><topic>Shear stress</topic><topic>Statistical analysis</topic><topic>Unidirectional composites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Yaohua</creatorcontrib><creatorcontrib>Huang, Tao</creatorcontrib><creatorcontrib>Zhang, Xun’an</creatorcontrib><creatorcontrib>Jia, Purong</creatorcontrib><creatorcontrib>Suo, Yongyong</creatorcontrib><creatorcontrib>Zhao, Shuyi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Yaohua</au><au>Huang, Tao</au><au>Zhang, Xun’an</au><au>Jia, Purong</au><au>Suo, Yongyong</au><au>Zhao, Shuyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Reliable Fracture Angle Determination Algorithm for Extended Puck’s 3D Inter-Fiber Failure Criterion for Unidirectional Composites</atitle><jtitle>Materials</jtitle><date>2021-10-23</date><risdate>2021</risdate><volume>14</volume><issue>21</issue><spage>6325</spage><pages>6325-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Determination of the fracture angle and maximum exposure value of extended Puck’s 3D inter-fiber failure (IFF) criterion is of great importance for predicting the failure mechanism of unidirectional fiber-reinforced composites. In this paper, a reliable semi-analytical algorithm (RSAA) is presented for searching fracture angle and corresponding exposure value for the extended Puck’s failure criterion. One hundred million cases are tested for verifying the accuracy of the present and other algorithms on Python using the strength-value-stress-state combinations more universal than those in previous literatures. The reliability of previous algorithms is discussed and counterexamples are provided for illustration. The statistical results show RSAA is adequate for implementation in extended Puck’s criterion and much more reliable than previous algorithms. RSAA can correctly predict the results with a probability of over 99.999%.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34771851</pmid><doi>10.3390/ma14216325</doi><orcidid>https://orcid.org/0000-0002-6134-6940</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2021-10, Vol.14 (21), p.6325 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8585166 |
source | PubMed Central Free; Publicly Available Content Database; Free Full-Text Journals in Chemistry |
subjects | Accuracy Algorithms Approximation Composite materials Criteria Failure mechanisms Fiber composites Shear strength Shear stress Statistical analysis Unidirectional composites |
title | A Reliable Fracture Angle Determination Algorithm for Extended Puck’s 3D Inter-Fiber Failure Criterion for Unidirectional Composites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A05%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Reliable%20Fracture%20Angle%20Determination%20Algorithm%20for%20Extended%20Puck%E2%80%99s%203D%20Inter-Fiber%20Failure%20Criterion%20for%20Unidirectional%20Composites&rft.jtitle=Materials&rft.au=Gong,%20Yaohua&rft.date=2021-10-23&rft.volume=14&rft.issue=21&rft.spage=6325&rft.pages=6325-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14216325&rft_dat=%3Cproquest_pubme%3E2596055709%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-96140cf01c4efb5c01a56d81a6eece73d3be5657df577785aafe7ba0de8826833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2596055709&rft_id=info:pmid/34771851&rfr_iscdi=true |