Loading…

A Reliable Fracture Angle Determination Algorithm for Extended Puck’s 3D Inter-Fiber Failure Criterion for Unidirectional Composites

Determination of the fracture angle and maximum exposure value of extended Puck’s 3D inter-fiber failure (IFF) criterion is of great importance for predicting the failure mechanism of unidirectional fiber-reinforced composites. In this paper, a reliable semi-analytical algorithm (RSAA) is presented...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2021-10, Vol.14 (21), p.6325
Main Authors: Gong, Yaohua, Huang, Tao, Zhang, Xun’an, Jia, Purong, Suo, Yongyong, Zhao, Shuyi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-96140cf01c4efb5c01a56d81a6eece73d3be5657df577785aafe7ba0de8826833
cites cdi_FETCH-LOGICAL-c383t-96140cf01c4efb5c01a56d81a6eece73d3be5657df577785aafe7ba0de8826833
container_end_page
container_issue 21
container_start_page 6325
container_title Materials
container_volume 14
creator Gong, Yaohua
Huang, Tao
Zhang, Xun’an
Jia, Purong
Suo, Yongyong
Zhao, Shuyi
description Determination of the fracture angle and maximum exposure value of extended Puck’s 3D inter-fiber failure (IFF) criterion is of great importance for predicting the failure mechanism of unidirectional fiber-reinforced composites. In this paper, a reliable semi-analytical algorithm (RSAA) is presented for searching fracture angle and corresponding exposure value for the extended Puck’s failure criterion. One hundred million cases are tested for verifying the accuracy of the present and other algorithms on Python using the strength-value-stress-state combinations more universal than those in previous literatures. The reliability of previous algorithms is discussed and counterexamples are provided for illustration. The statistical results show RSAA is adequate for implementation in extended Puck’s criterion and much more reliable than previous algorithms. RSAA can correctly predict the results with a probability of over 99.999%.
doi_str_mv 10.3390/ma14216325
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8585166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596055709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-96140cf01c4efb5c01a56d81a6eece73d3be5657df577785aafe7ba0de8826833</originalsourceid><addsrcrecordid>eNpdkc1qFTEUx4MottRufIKAGxFGk8nkayNcbnu1UFDErkMmc-Y2NZNckxnRnSvfwdfzSczY4lc2Scjv_yPnHIQeU_KcMU1eTJZ2LRWs5ffQMdVaNFR33f2_zkfotJQbUhdjVLX6ITpinZRUcXqMvm3wOwje9gHwLls3LxnwJu7r9QxmyJOPdvYp4k3Yp-zn6wmPKePzzzPEAQb8dnEffnz9XjA7wxexBpqd7yHjnfVhVW1rBvIqWGNX0Q8-g1uNNuBtmg6pVKA8Qg9GGwqc3u0n6Gp3_n77url88-piu7lsHFNsbrSgHXEjoa6DseeOUMvFoKgVAA4kG1gPXHA5jFxKqbi1I8jekgGUaoVi7AS9vPUeln6CwUGcsw3mkP1k8xeTrDf_vkR_bfbpk1G8tkuIKnh6J8jp4wJlNpMvDkKwEdJSTMu17HSnKK3ok__Qm7TkWvcvShDOJdGVenZLuZxKyTD-_gwlZp2w-TNh9hM4pJoO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596055709</pqid></control><display><type>article</type><title>A Reliable Fracture Angle Determination Algorithm for Extended Puck’s 3D Inter-Fiber Failure Criterion for Unidirectional Composites</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Gong, Yaohua ; Huang, Tao ; Zhang, Xun’an ; Jia, Purong ; Suo, Yongyong ; Zhao, Shuyi</creator><creatorcontrib>Gong, Yaohua ; Huang, Tao ; Zhang, Xun’an ; Jia, Purong ; Suo, Yongyong ; Zhao, Shuyi</creatorcontrib><description>Determination of the fracture angle and maximum exposure value of extended Puck’s 3D inter-fiber failure (IFF) criterion is of great importance for predicting the failure mechanism of unidirectional fiber-reinforced composites. In this paper, a reliable semi-analytical algorithm (RSAA) is presented for searching fracture angle and corresponding exposure value for the extended Puck’s failure criterion. One hundred million cases are tested for verifying the accuracy of the present and other algorithms on Python using the strength-value-stress-state combinations more universal than those in previous literatures. The reliability of previous algorithms is discussed and counterexamples are provided for illustration. The statistical results show RSAA is adequate for implementation in extended Puck’s criterion and much more reliable than previous algorithms. RSAA can correctly predict the results with a probability of over 99.999%.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14216325</identifier><identifier>PMID: 34771851</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Approximation ; Composite materials ; Criteria ; Failure mechanisms ; Fiber composites ; Shear strength ; Shear stress ; Statistical analysis ; Unidirectional composites</subject><ispartof>Materials, 2021-10, Vol.14 (21), p.6325</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-96140cf01c4efb5c01a56d81a6eece73d3be5657df577785aafe7ba0de8826833</citedby><cites>FETCH-LOGICAL-c383t-96140cf01c4efb5c01a56d81a6eece73d3be5657df577785aafe7ba0de8826833</cites><orcidid>0000-0002-6134-6940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2596055709/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2596055709?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Gong, Yaohua</creatorcontrib><creatorcontrib>Huang, Tao</creatorcontrib><creatorcontrib>Zhang, Xun’an</creatorcontrib><creatorcontrib>Jia, Purong</creatorcontrib><creatorcontrib>Suo, Yongyong</creatorcontrib><creatorcontrib>Zhao, Shuyi</creatorcontrib><title>A Reliable Fracture Angle Determination Algorithm for Extended Puck’s 3D Inter-Fiber Failure Criterion for Unidirectional Composites</title><title>Materials</title><description>Determination of the fracture angle and maximum exposure value of extended Puck’s 3D inter-fiber failure (IFF) criterion is of great importance for predicting the failure mechanism of unidirectional fiber-reinforced composites. In this paper, a reliable semi-analytical algorithm (RSAA) is presented for searching fracture angle and corresponding exposure value for the extended Puck’s failure criterion. One hundred million cases are tested for verifying the accuracy of the present and other algorithms on Python using the strength-value-stress-state combinations more universal than those in previous literatures. The reliability of previous algorithms is discussed and counterexamples are provided for illustration. The statistical results show RSAA is adequate for implementation in extended Puck’s criterion and much more reliable than previous algorithms. RSAA can correctly predict the results with a probability of over 99.999%.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Composite materials</subject><subject>Criteria</subject><subject>Failure mechanisms</subject><subject>Fiber composites</subject><subject>Shear strength</subject><subject>Shear stress</subject><subject>Statistical analysis</subject><subject>Unidirectional composites</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkc1qFTEUx4MottRufIKAGxFGk8nkayNcbnu1UFDErkMmc-Y2NZNckxnRnSvfwdfzSczY4lc2Scjv_yPnHIQeU_KcMU1eTJZ2LRWs5ffQMdVaNFR33f2_zkfotJQbUhdjVLX6ITpinZRUcXqMvm3wOwje9gHwLls3LxnwJu7r9QxmyJOPdvYp4k3Yp-zn6wmPKePzzzPEAQb8dnEffnz9XjA7wxexBpqd7yHjnfVhVW1rBvIqWGNX0Q8-g1uNNuBtmg6pVKA8Qg9GGwqc3u0n6Gp3_n77url88-piu7lsHFNsbrSgHXEjoa6DseeOUMvFoKgVAA4kG1gPXHA5jFxKqbi1I8jekgGUaoVi7AS9vPUeln6CwUGcsw3mkP1k8xeTrDf_vkR_bfbpk1G8tkuIKnh6J8jp4wJlNpMvDkKwEdJSTMu17HSnKK3ok__Qm7TkWvcvShDOJdGVenZLuZxKyTD-_gwlZp2w-TNh9hM4pJoO</recordid><startdate>20211023</startdate><enddate>20211023</enddate><creator>Gong, Yaohua</creator><creator>Huang, Tao</creator><creator>Zhang, Xun’an</creator><creator>Jia, Purong</creator><creator>Suo, Yongyong</creator><creator>Zhao, Shuyi</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6134-6940</orcidid></search><sort><creationdate>20211023</creationdate><title>A Reliable Fracture Angle Determination Algorithm for Extended Puck’s 3D Inter-Fiber Failure Criterion for Unidirectional Composites</title><author>Gong, Yaohua ; Huang, Tao ; Zhang, Xun’an ; Jia, Purong ; Suo, Yongyong ; Zhao, Shuyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-96140cf01c4efb5c01a56d81a6eece73d3be5657df577785aafe7ba0de8826833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Composite materials</topic><topic>Criteria</topic><topic>Failure mechanisms</topic><topic>Fiber composites</topic><topic>Shear strength</topic><topic>Shear stress</topic><topic>Statistical analysis</topic><topic>Unidirectional composites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Yaohua</creatorcontrib><creatorcontrib>Huang, Tao</creatorcontrib><creatorcontrib>Zhang, Xun’an</creatorcontrib><creatorcontrib>Jia, Purong</creatorcontrib><creatorcontrib>Suo, Yongyong</creatorcontrib><creatorcontrib>Zhao, Shuyi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Yaohua</au><au>Huang, Tao</au><au>Zhang, Xun’an</au><au>Jia, Purong</au><au>Suo, Yongyong</au><au>Zhao, Shuyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Reliable Fracture Angle Determination Algorithm for Extended Puck’s 3D Inter-Fiber Failure Criterion for Unidirectional Composites</atitle><jtitle>Materials</jtitle><date>2021-10-23</date><risdate>2021</risdate><volume>14</volume><issue>21</issue><spage>6325</spage><pages>6325-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Determination of the fracture angle and maximum exposure value of extended Puck’s 3D inter-fiber failure (IFF) criterion is of great importance for predicting the failure mechanism of unidirectional fiber-reinforced composites. In this paper, a reliable semi-analytical algorithm (RSAA) is presented for searching fracture angle and corresponding exposure value for the extended Puck’s failure criterion. One hundred million cases are tested for verifying the accuracy of the present and other algorithms on Python using the strength-value-stress-state combinations more universal than those in previous literatures. The reliability of previous algorithms is discussed and counterexamples are provided for illustration. The statistical results show RSAA is adequate for implementation in extended Puck’s criterion and much more reliable than previous algorithms. RSAA can correctly predict the results with a probability of over 99.999%.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34771851</pmid><doi>10.3390/ma14216325</doi><orcidid>https://orcid.org/0000-0002-6134-6940</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2021-10, Vol.14 (21), p.6325
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8585166
source PubMed Central Free; Publicly Available Content Database; Free Full-Text Journals in Chemistry
subjects Accuracy
Algorithms
Approximation
Composite materials
Criteria
Failure mechanisms
Fiber composites
Shear strength
Shear stress
Statistical analysis
Unidirectional composites
title A Reliable Fracture Angle Determination Algorithm for Extended Puck’s 3D Inter-Fiber Failure Criterion for Unidirectional Composites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A05%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Reliable%20Fracture%20Angle%20Determination%20Algorithm%20for%20Extended%20Puck%E2%80%99s%203D%20Inter-Fiber%20Failure%20Criterion%20for%20Unidirectional%20Composites&rft.jtitle=Materials&rft.au=Gong,%20Yaohua&rft.date=2021-10-23&rft.volume=14&rft.issue=21&rft.spage=6325&rft.pages=6325-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14216325&rft_dat=%3Cproquest_pubme%3E2596055709%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-96140cf01c4efb5c01a56d81a6eece73d3be5657df577785aafe7ba0de8826833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2596055709&rft_id=info:pmid/34771851&rfr_iscdi=true