Loading…

Effect of Nanoparticles Surface Bonding and Aspect Ratio on Mechanical Properties of Highly Cross-Linked Epoxy Nanocomposites: Mesoscopic Simulations

The paper aims to study the mechanical properties of epoxy resin filled with clay nanoparticles (NPs), depending on their shapes and content on the surface of a modifying agent capable of forming covalent bonds with a polymer. The cylindrical clay nanoparticles with equal volume and different aspect...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2021-11, Vol.14 (21), p.6637
Main Authors: Malyshev, Maxim D, Guseva, Daria V, Vasilevskaya, Valentina V, Komarov, Pavel V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-3049d7cbb0a81f99c94f01cfc81c986bac5bc7611b83aea743f2b93c016631de3
cites cdi_FETCH-LOGICAL-c406t-3049d7cbb0a81f99c94f01cfc81c986bac5bc7611b83aea743f2b93c016631de3
container_end_page
container_issue 21
container_start_page 6637
container_title Materials
container_volume 14
creator Malyshev, Maxim D
Guseva, Daria V
Vasilevskaya, Valentina V
Komarov, Pavel V
description The paper aims to study the mechanical properties of epoxy resin filled with clay nanoparticles (NPs), depending on their shapes and content on the surface of a modifying agent capable of forming covalent bonds with a polymer. The cylindrical clay nanoparticles with equal volume and different aspects ratios (disks, barrel, and stick) are addressed. The NPs' bonding ratio with the polymer ( ) is determined by the fraction of reactive groups and conversion time and varies from = 0 (non-bonded nanoparticles) to = 0.65 (more than half of the surface groups are linked with the polymer matrix). The performed simulations show the so-called load-bearing chains (LBCs) of chemically cross-linked monomers and modified nanoparticles to determine the mechanical properties of the simulated composites. The introduction of nanoparticles leads to the breaking of such chains, and the chemical cross-linking of NPs with the polymer matrix restores the LBCs and strengthens the composite. At small values of , the largest value of the elastic modulus is found for systems filled with nanoparticles having the smallest surface area, and at high values of , on the contrary, the systems containing disk-shaped particles with the largest surface area have a larger elastic modulus than the others. All calculations are performed within the framework of a mesoscopic model based on accurate mapping of the atomistic structures of the polymer matrix and nanoparticles into coarse-grained representations, which, if necessary, allow reverse data mapping and quantitative assessment of the state of the filled epoxy resin. On the other hand, the obtained data can be used to design the functional materials with specified mechanical properties based on other practically significant polymer matrices and nanofillers.
doi_str_mv 10.3390/ma14216637
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8587117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596054278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-3049d7cbb0a81f99c94f01cfc81c986bac5bc7611b83aea743f2b93c016631de3</originalsourceid><addsrcrecordid>eNpdkV2P1CAUhonRuJt1b_wBhsQbY9IVCi3ghck6Gd1Nxo-4et3QU5hhbaFCa5wf4v-Vup_KDSQ878PhHISeUnLCmCKvBk15SeuaiQfokCpVF1Rx_vDe-QAdp3RJ8mKMylI9RgeMC5FD8hD9XltrYMLB4o_ah1HHyUFvEr6Yo9Vg8NvgO-e3WPsOn6ZxYb_oyQUcPP5gYKe9A93jzzGMJmdzMqvO3HbX7_EqhpSKjfPfTYfXY_i1__sIhGEMyU0mvc6KFBKE0QG-cMPcL2qfnqBHVvfJHF_vR-jbu_XX1Vmx-fT-fHW6KYCTeioY4aoT0LZES2qVAsUtoWBBUlCybjVULYia0lYybbTgzJatYkCWftHOsCP05so7zu1gOjB-irpvxugGHfdN0K7598a7XbMNPxtZSUGpyIIX14IYfswmTc3gEpi-196EOTVlpURFKKnLjD7_D70Mc_T5ewtVk4qXQmbq5RUFS--isbfFUNIsA2_uBp7hZ_fLv0Vvxsv-AAXYqOE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596054278</pqid></control><display><type>article</type><title>Effect of Nanoparticles Surface Bonding and Aspect Ratio on Mechanical Properties of Highly Cross-Linked Epoxy Nanocomposites: Mesoscopic Simulations</title><source>Open Access: PubMed Central</source><source>Full-Text Journals in Chemistry (Open access)</source><source>ProQuest - Publicly Available Content Database</source><creator>Malyshev, Maxim D ; Guseva, Daria V ; Vasilevskaya, Valentina V ; Komarov, Pavel V</creator><creatorcontrib>Malyshev, Maxim D ; Guseva, Daria V ; Vasilevskaya, Valentina V ; Komarov, Pavel V</creatorcontrib><description>The paper aims to study the mechanical properties of epoxy resin filled with clay nanoparticles (NPs), depending on their shapes and content on the surface of a modifying agent capable of forming covalent bonds with a polymer. The cylindrical clay nanoparticles with equal volume and different aspects ratios (disks, barrel, and stick) are addressed. The NPs' bonding ratio with the polymer ( ) is determined by the fraction of reactive groups and conversion time and varies from = 0 (non-bonded nanoparticles) to = 0.65 (more than half of the surface groups are linked with the polymer matrix). The performed simulations show the so-called load-bearing chains (LBCs) of chemically cross-linked monomers and modified nanoparticles to determine the mechanical properties of the simulated composites. The introduction of nanoparticles leads to the breaking of such chains, and the chemical cross-linking of NPs with the polymer matrix restores the LBCs and strengthens the composite. At small values of , the largest value of the elastic modulus is found for systems filled with nanoparticles having the smallest surface area, and at high values of , on the contrary, the systems containing disk-shaped particles with the largest surface area have a larger elastic modulus than the others. All calculations are performed within the framework of a mesoscopic model based on accurate mapping of the atomistic structures of the polymer matrix and nanoparticles into coarse-grained representations, which, if necessary, allow reverse data mapping and quantitative assessment of the state of the filled epoxy resin. On the other hand, the obtained data can be used to design the functional materials with specified mechanical properties based on other practically significant polymer matrices and nanofillers.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14216637</identifier><identifier>PMID: 34772168</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aspect ratio ; Atoms &amp; subatomic particles ; Bonding agents ; Boundary conditions ; Clay ; Covalent bonds ; Crosslinking ; Disks ; Epoxy resins ; Functional materials ; Mapping ; Mechanical properties ; Modulus of elasticity ; Nanocomposites ; Nanoparticles ; Polymer melts ; Polymers ; Simulation ; Surface area</subject><ispartof>Materials, 2021-11, Vol.14 (21), p.6637</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-3049d7cbb0a81f99c94f01cfc81c986bac5bc7611b83aea743f2b93c016631de3</citedby><cites>FETCH-LOGICAL-c406t-3049d7cbb0a81f99c94f01cfc81c986bac5bc7611b83aea743f2b93c016631de3</cites><orcidid>0000-0003-0623-0467 ; 0000-0003-2138-5088 ; 0000-0002-2799-7512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2596054278/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2596054278?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34772168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Malyshev, Maxim D</creatorcontrib><creatorcontrib>Guseva, Daria V</creatorcontrib><creatorcontrib>Vasilevskaya, Valentina V</creatorcontrib><creatorcontrib>Komarov, Pavel V</creatorcontrib><title>Effect of Nanoparticles Surface Bonding and Aspect Ratio on Mechanical Properties of Highly Cross-Linked Epoxy Nanocomposites: Mesoscopic Simulations</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The paper aims to study the mechanical properties of epoxy resin filled with clay nanoparticles (NPs), depending on their shapes and content on the surface of a modifying agent capable of forming covalent bonds with a polymer. The cylindrical clay nanoparticles with equal volume and different aspects ratios (disks, barrel, and stick) are addressed. The NPs' bonding ratio with the polymer ( ) is determined by the fraction of reactive groups and conversion time and varies from = 0 (non-bonded nanoparticles) to = 0.65 (more than half of the surface groups are linked with the polymer matrix). The performed simulations show the so-called load-bearing chains (LBCs) of chemically cross-linked monomers and modified nanoparticles to determine the mechanical properties of the simulated composites. The introduction of nanoparticles leads to the breaking of such chains, and the chemical cross-linking of NPs with the polymer matrix restores the LBCs and strengthens the composite. At small values of , the largest value of the elastic modulus is found for systems filled with nanoparticles having the smallest surface area, and at high values of , on the contrary, the systems containing disk-shaped particles with the largest surface area have a larger elastic modulus than the others. All calculations are performed within the framework of a mesoscopic model based on accurate mapping of the atomistic structures of the polymer matrix and nanoparticles into coarse-grained representations, which, if necessary, allow reverse data mapping and quantitative assessment of the state of the filled epoxy resin. On the other hand, the obtained data can be used to design the functional materials with specified mechanical properties based on other practically significant polymer matrices and nanofillers.</description><subject>Aspect ratio</subject><subject>Atoms &amp; subatomic particles</subject><subject>Bonding agents</subject><subject>Boundary conditions</subject><subject>Clay</subject><subject>Covalent bonds</subject><subject>Crosslinking</subject><subject>Disks</subject><subject>Epoxy resins</subject><subject>Functional materials</subject><subject>Mapping</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Polymer melts</subject><subject>Polymers</subject><subject>Simulation</subject><subject>Surface area</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkV2P1CAUhonRuJt1b_wBhsQbY9IVCi3ghck6Gd1Nxo-4et3QU5hhbaFCa5wf4v-Vup_KDSQ878PhHISeUnLCmCKvBk15SeuaiQfokCpVF1Rx_vDe-QAdp3RJ8mKMylI9RgeMC5FD8hD9XltrYMLB4o_ah1HHyUFvEr6Yo9Vg8NvgO-e3WPsOn6ZxYb_oyQUcPP5gYKe9A93jzzGMJmdzMqvO3HbX7_EqhpSKjfPfTYfXY_i1__sIhGEMyU0mvc6KFBKE0QG-cMPcL2qfnqBHVvfJHF_vR-jbu_XX1Vmx-fT-fHW6KYCTeioY4aoT0LZES2qVAsUtoWBBUlCybjVULYia0lYybbTgzJatYkCWftHOsCP05so7zu1gOjB-irpvxugGHfdN0K7598a7XbMNPxtZSUGpyIIX14IYfswmTc3gEpi-196EOTVlpURFKKnLjD7_D70Mc_T5ewtVk4qXQmbq5RUFS--isbfFUNIsA2_uBp7hZ_fLv0Vvxsv-AAXYqOE</recordid><startdate>20211104</startdate><enddate>20211104</enddate><creator>Malyshev, Maxim D</creator><creator>Guseva, Daria V</creator><creator>Vasilevskaya, Valentina V</creator><creator>Komarov, Pavel V</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0623-0467</orcidid><orcidid>https://orcid.org/0000-0003-2138-5088</orcidid><orcidid>https://orcid.org/0000-0002-2799-7512</orcidid></search><sort><creationdate>20211104</creationdate><title>Effect of Nanoparticles Surface Bonding and Aspect Ratio on Mechanical Properties of Highly Cross-Linked Epoxy Nanocomposites: Mesoscopic Simulations</title><author>Malyshev, Maxim D ; Guseva, Daria V ; Vasilevskaya, Valentina V ; Komarov, Pavel V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-3049d7cbb0a81f99c94f01cfc81c986bac5bc7611b83aea743f2b93c016631de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aspect ratio</topic><topic>Atoms &amp; subatomic particles</topic><topic>Bonding agents</topic><topic>Boundary conditions</topic><topic>Clay</topic><topic>Covalent bonds</topic><topic>Crosslinking</topic><topic>Disks</topic><topic>Epoxy resins</topic><topic>Functional materials</topic><topic>Mapping</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Polymer melts</topic><topic>Polymers</topic><topic>Simulation</topic><topic>Surface area</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malyshev, Maxim D</creatorcontrib><creatorcontrib>Guseva, Daria V</creatorcontrib><creatorcontrib>Vasilevskaya, Valentina V</creatorcontrib><creatorcontrib>Komarov, Pavel V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malyshev, Maxim D</au><au>Guseva, Daria V</au><au>Vasilevskaya, Valentina V</au><au>Komarov, Pavel V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Nanoparticles Surface Bonding and Aspect Ratio on Mechanical Properties of Highly Cross-Linked Epoxy Nanocomposites: Mesoscopic Simulations</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2021-11-04</date><risdate>2021</risdate><volume>14</volume><issue>21</issue><spage>6637</spage><pages>6637-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The paper aims to study the mechanical properties of epoxy resin filled with clay nanoparticles (NPs), depending on their shapes and content on the surface of a modifying agent capable of forming covalent bonds with a polymer. The cylindrical clay nanoparticles with equal volume and different aspects ratios (disks, barrel, and stick) are addressed. The NPs' bonding ratio with the polymer ( ) is determined by the fraction of reactive groups and conversion time and varies from = 0 (non-bonded nanoparticles) to = 0.65 (more than half of the surface groups are linked with the polymer matrix). The performed simulations show the so-called load-bearing chains (LBCs) of chemically cross-linked monomers and modified nanoparticles to determine the mechanical properties of the simulated composites. The introduction of nanoparticles leads to the breaking of such chains, and the chemical cross-linking of NPs with the polymer matrix restores the LBCs and strengthens the composite. At small values of , the largest value of the elastic modulus is found for systems filled with nanoparticles having the smallest surface area, and at high values of , on the contrary, the systems containing disk-shaped particles with the largest surface area have a larger elastic modulus than the others. All calculations are performed within the framework of a mesoscopic model based on accurate mapping of the atomistic structures of the polymer matrix and nanoparticles into coarse-grained representations, which, if necessary, allow reverse data mapping and quantitative assessment of the state of the filled epoxy resin. On the other hand, the obtained data can be used to design the functional materials with specified mechanical properties based on other practically significant polymer matrices and nanofillers.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34772168</pmid><doi>10.3390/ma14216637</doi><orcidid>https://orcid.org/0000-0003-0623-0467</orcidid><orcidid>https://orcid.org/0000-0003-2138-5088</orcidid><orcidid>https://orcid.org/0000-0002-2799-7512</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2021-11, Vol.14 (21), p.6637
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8587117
source Open Access: PubMed Central; Full-Text Journals in Chemistry (Open access); ProQuest - Publicly Available Content Database
subjects Aspect ratio
Atoms & subatomic particles
Bonding agents
Boundary conditions
Clay
Covalent bonds
Crosslinking
Disks
Epoxy resins
Functional materials
Mapping
Mechanical properties
Modulus of elasticity
Nanocomposites
Nanoparticles
Polymer melts
Polymers
Simulation
Surface area
title Effect of Nanoparticles Surface Bonding and Aspect Ratio on Mechanical Properties of Highly Cross-Linked Epoxy Nanocomposites: Mesoscopic Simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A31%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Nanoparticles%20Surface%20Bonding%20and%20Aspect%20Ratio%20on%20Mechanical%20Properties%20of%20Highly%20Cross-Linked%20Epoxy%20Nanocomposites:%20Mesoscopic%20Simulations&rft.jtitle=Materials&rft.au=Malyshev,%20Maxim%20D&rft.date=2021-11-04&rft.volume=14&rft.issue=21&rft.spage=6637&rft.pages=6637-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14216637&rft_dat=%3Cproquest_pubme%3E2596054278%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-3049d7cbb0a81f99c94f01cfc81c986bac5bc7611b83aea743f2b93c016631de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2596054278&rft_id=info:pmid/34772168&rfr_iscdi=true