Loading…

Network-based forecasting of climate phenomena

Network theory, as emerging from complex systems science, can provide critical predictive power for mitigating the global warming crisis and other societal challenges. Here we discuss the main differences of this approach to classical numerical modeling and highlight several cases where the network...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2021-11, Vol.118 (47), p.1-10
Main Authors: Ludescher, Josef, Martin, Maria, Boers, Niklas, Bunde, Armin, Ciemer, Catrin, Fan, Jingfang, Havlin, Shlomo, Kretschmer, Marlene, Kurths, Jürgen, Runge, Jakob, Stolbova, Veronika, Surovyatkina, Elena, Schellnhuber, Hans Joachim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-f6c650c29084ce30b47ec41609844231c0fe8b996f6bba9689042f80e8f900973
cites cdi_FETCH-LOGICAL-c443t-f6c650c29084ce30b47ec41609844231c0fe8b996f6bba9689042f80e8f900973
container_end_page 10
container_issue 47
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Ludescher, Josef
Martin, Maria
Boers, Niklas
Bunde, Armin
Ciemer, Catrin
Fan, Jingfang
Havlin, Shlomo
Kretschmer, Marlene
Kurths, Jürgen
Runge, Jakob
Stolbova, Veronika
Surovyatkina, Elena
Schellnhuber, Hans Joachim
description Network theory, as emerging from complex systems science, can provide critical predictive power for mitigating the global warming crisis and other societal challenges. Here we discuss the main differences of this approach to classical numerical modeling and highlight several cases where the network approach substantially improved the prediction of high-impact phenomena: 1) El Niño events, 2) droughts in the central Amazon, 3) extreme rainfall in the eastern Central Andes, 4) the Indian summer monsoon, and 5) extreme stratospheric polar vortex states that influence the occurrence of wintertime cold spells in northern Eurasia. In this perspective, we argue that network-based approaches can gainfully complement numerical modeling.
doi_str_mv 10.1073/pnas.1922872118
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8617481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27093958</jstor_id><sourcerecordid>27093958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-f6c650c29084ce30b47ec41609844231c0fe8b996f6bba9689042f80e8f900973</originalsourceid><addsrcrecordid>eNpVkE1PAjEQhhujEUTPnjSbeF6Yfmy3vZgY4ldC9KLnpltaWITt2i4a_70lIOppDvPMO28ehM4xDDGUdNQ2Og6xJESUBGNxgPoYJM45k3CI-gCkzAUjrIdOYlwAgCwEHKMeZaUgrCj6aPhku08f3vJKRzvNnA_W6NjVzSzzLjPLeqU7m7Vz2_iVbfQpOnJ6Ge3Zbg7Q693ty_ghnzzfP45vJrlhjHa544YXYIgEwYylULHSGoY5SMEYodiAs6KSkjteVVpyIYERJ8AKJ1PJkg7Q9Ta3XVcrOzW26YJeqjakPuFLeV2r_5umnquZ_1CC45IJnAKudgHBv69t7NTCr0OTOivCk5ZUjMpEjbaUCT7GYN3-Awa1Eaw2gtWv4HRx-bfYnv8xmoCLLbCInQ_7ffooabJPvwFJR3_6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602708439</pqid></control><display><type>article</type><title>Network-based forecasting of climate phenomena</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Ludescher, Josef ; Martin, Maria ; Boers, Niklas ; Bunde, Armin ; Ciemer, Catrin ; Fan, Jingfang ; Havlin, Shlomo ; Kretschmer, Marlene ; Kurths, Jürgen ; Runge, Jakob ; Stolbova, Veronika ; Surovyatkina, Elena ; Schellnhuber, Hans Joachim</creator><creatorcontrib>Ludescher, Josef ; Martin, Maria ; Boers, Niklas ; Bunde, Armin ; Ciemer, Catrin ; Fan, Jingfang ; Havlin, Shlomo ; Kretschmer, Marlene ; Kurths, Jürgen ; Runge, Jakob ; Stolbova, Veronika ; Surovyatkina, Elena ; Schellnhuber, Hans Joachim</creatorcontrib><description>Network theory, as emerging from complex systems science, can provide critical predictive power for mitigating the global warming crisis and other societal challenges. Here we discuss the main differences of this approach to classical numerical modeling and highlight several cases where the network approach substantially improved the prediction of high-impact phenomena: 1) El Niño events, 2) droughts in the central Amazon, 3) extreme rainfall in the eastern Central Andes, 4) the Indian summer monsoon, and 5) extreme stratospheric polar vortex states that influence the occurrence of wintertime cold spells in northern Eurasia. In this perspective, we argue that network-based approaches can gainfully complement numerical modeling.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1922872118</identifier><identifier>PMID: 34782455</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Climate change ; Complex systems ; Drought ; El Nino ; Extreme weather ; Global warming ; Mathematical models ; PERSPECTIVE ; Physical Sciences ; Polar vortex ; Rainfall</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-11, Vol.118 (47), p.1-10</ispartof><rights>Copyright National Academy of Sciences Nov 23, 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-f6c650c29084ce30b47ec41609844231c0fe8b996f6bba9689042f80e8f900973</citedby><cites>FETCH-LOGICAL-c443t-f6c650c29084ce30b47ec41609844231c0fe8b996f6bba9689042f80e8f900973</cites><orcidid>0000-0002-5574-3827 ; 0000-0001-5136-4988 ; 0000-0003-1954-4641 ; 0000-0002-9974-5920 ; 0000-0002-1443-0891 ; 0000-0002-4092-3761 ; 0000-0002-1239-9034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27093958$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27093958$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34782455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ludescher, Josef</creatorcontrib><creatorcontrib>Martin, Maria</creatorcontrib><creatorcontrib>Boers, Niklas</creatorcontrib><creatorcontrib>Bunde, Armin</creatorcontrib><creatorcontrib>Ciemer, Catrin</creatorcontrib><creatorcontrib>Fan, Jingfang</creatorcontrib><creatorcontrib>Havlin, Shlomo</creatorcontrib><creatorcontrib>Kretschmer, Marlene</creatorcontrib><creatorcontrib>Kurths, Jürgen</creatorcontrib><creatorcontrib>Runge, Jakob</creatorcontrib><creatorcontrib>Stolbova, Veronika</creatorcontrib><creatorcontrib>Surovyatkina, Elena</creatorcontrib><creatorcontrib>Schellnhuber, Hans Joachim</creatorcontrib><title>Network-based forecasting of climate phenomena</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Network theory, as emerging from complex systems science, can provide critical predictive power for mitigating the global warming crisis and other societal challenges. Here we discuss the main differences of this approach to classical numerical modeling and highlight several cases where the network approach substantially improved the prediction of high-impact phenomena: 1) El Niño events, 2) droughts in the central Amazon, 3) extreme rainfall in the eastern Central Andes, 4) the Indian summer monsoon, and 5) extreme stratospheric polar vortex states that influence the occurrence of wintertime cold spells in northern Eurasia. In this perspective, we argue that network-based approaches can gainfully complement numerical modeling.</description><subject>Climate change</subject><subject>Complex systems</subject><subject>Drought</subject><subject>El Nino</subject><subject>Extreme weather</subject><subject>Global warming</subject><subject>Mathematical models</subject><subject>PERSPECTIVE</subject><subject>Physical Sciences</subject><subject>Polar vortex</subject><subject>Rainfall</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkE1PAjEQhhujEUTPnjSbeF6Yfmy3vZgY4ldC9KLnpltaWITt2i4a_70lIOppDvPMO28ehM4xDDGUdNQ2Og6xJESUBGNxgPoYJM45k3CI-gCkzAUjrIdOYlwAgCwEHKMeZaUgrCj6aPhku08f3vJKRzvNnA_W6NjVzSzzLjPLeqU7m7Vz2_iVbfQpOnJ6Ge3Zbg7Q693ty_ghnzzfP45vJrlhjHa544YXYIgEwYylULHSGoY5SMEYodiAs6KSkjteVVpyIYERJ8AKJ1PJkg7Q9Ta3XVcrOzW26YJeqjakPuFLeV2r_5umnquZ_1CC45IJnAKudgHBv69t7NTCr0OTOivCk5ZUjMpEjbaUCT7GYN3-Awa1Eaw2gtWv4HRx-bfYnv8xmoCLLbCInQ_7ffooabJPvwFJR3_6</recordid><startdate>20211123</startdate><enddate>20211123</enddate><creator>Ludescher, Josef</creator><creator>Martin, Maria</creator><creator>Boers, Niklas</creator><creator>Bunde, Armin</creator><creator>Ciemer, Catrin</creator><creator>Fan, Jingfang</creator><creator>Havlin, Shlomo</creator><creator>Kretschmer, Marlene</creator><creator>Kurths, Jürgen</creator><creator>Runge, Jakob</creator><creator>Stolbova, Veronika</creator><creator>Surovyatkina, Elena</creator><creator>Schellnhuber, Hans Joachim</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5574-3827</orcidid><orcidid>https://orcid.org/0000-0001-5136-4988</orcidid><orcidid>https://orcid.org/0000-0003-1954-4641</orcidid><orcidid>https://orcid.org/0000-0002-9974-5920</orcidid><orcidid>https://orcid.org/0000-0002-1443-0891</orcidid><orcidid>https://orcid.org/0000-0002-4092-3761</orcidid><orcidid>https://orcid.org/0000-0002-1239-9034</orcidid></search><sort><creationdate>20211123</creationdate><title>Network-based forecasting of climate phenomena</title><author>Ludescher, Josef ; Martin, Maria ; Boers, Niklas ; Bunde, Armin ; Ciemer, Catrin ; Fan, Jingfang ; Havlin, Shlomo ; Kretschmer, Marlene ; Kurths, Jürgen ; Runge, Jakob ; Stolbova, Veronika ; Surovyatkina, Elena ; Schellnhuber, Hans Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-f6c650c29084ce30b47ec41609844231c0fe8b996f6bba9689042f80e8f900973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Climate change</topic><topic>Complex systems</topic><topic>Drought</topic><topic>El Nino</topic><topic>Extreme weather</topic><topic>Global warming</topic><topic>Mathematical models</topic><topic>PERSPECTIVE</topic><topic>Physical Sciences</topic><topic>Polar vortex</topic><topic>Rainfall</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ludescher, Josef</creatorcontrib><creatorcontrib>Martin, Maria</creatorcontrib><creatorcontrib>Boers, Niklas</creatorcontrib><creatorcontrib>Bunde, Armin</creatorcontrib><creatorcontrib>Ciemer, Catrin</creatorcontrib><creatorcontrib>Fan, Jingfang</creatorcontrib><creatorcontrib>Havlin, Shlomo</creatorcontrib><creatorcontrib>Kretschmer, Marlene</creatorcontrib><creatorcontrib>Kurths, Jürgen</creatorcontrib><creatorcontrib>Runge, Jakob</creatorcontrib><creatorcontrib>Stolbova, Veronika</creatorcontrib><creatorcontrib>Surovyatkina, Elena</creatorcontrib><creatorcontrib>Schellnhuber, Hans Joachim</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ludescher, Josef</au><au>Martin, Maria</au><au>Boers, Niklas</au><au>Bunde, Armin</au><au>Ciemer, Catrin</au><au>Fan, Jingfang</au><au>Havlin, Shlomo</au><au>Kretschmer, Marlene</au><au>Kurths, Jürgen</au><au>Runge, Jakob</au><au>Stolbova, Veronika</au><au>Surovyatkina, Elena</au><au>Schellnhuber, Hans Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network-based forecasting of climate phenomena</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-11-23</date><risdate>2021</risdate><volume>118</volume><issue>47</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Network theory, as emerging from complex systems science, can provide critical predictive power for mitigating the global warming crisis and other societal challenges. Here we discuss the main differences of this approach to classical numerical modeling and highlight several cases where the network approach substantially improved the prediction of high-impact phenomena: 1) El Niño events, 2) droughts in the central Amazon, 3) extreme rainfall in the eastern Central Andes, 4) the Indian summer monsoon, and 5) extreme stratospheric polar vortex states that influence the occurrence of wintertime cold spells in northern Eurasia. In this perspective, we argue that network-based approaches can gainfully complement numerical modeling.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34782455</pmid><doi>10.1073/pnas.1922872118</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5574-3827</orcidid><orcidid>https://orcid.org/0000-0001-5136-4988</orcidid><orcidid>https://orcid.org/0000-0003-1954-4641</orcidid><orcidid>https://orcid.org/0000-0002-9974-5920</orcidid><orcidid>https://orcid.org/0000-0002-1443-0891</orcidid><orcidid>https://orcid.org/0000-0002-4092-3761</orcidid><orcidid>https://orcid.org/0000-0002-1239-9034</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-11, Vol.118 (47), p.1-10
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8617481
source Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection
subjects Climate change
Complex systems
Drought
El Nino
Extreme weather
Global warming
Mathematical models
PERSPECTIVE
Physical Sciences
Polar vortex
Rainfall
title Network-based forecasting of climate phenomena
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network-based%20forecasting%20of%20climate%20phenomena&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ludescher,%20Josef&rft.date=2021-11-23&rft.volume=118&rft.issue=47&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1922872118&rft_dat=%3Cjstor_pubme%3E27093958%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-f6c650c29084ce30b47ec41609844231c0fe8b996f6bba9689042f80e8f900973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2602708439&rft_id=info:pmid/34782455&rft_jstor_id=27093958&rfr_iscdi=true