Loading…
Network-based forecasting of climate phenomena
Network theory, as emerging from complex systems science, can provide critical predictive power for mitigating the global warming crisis and other societal challenges. Here we discuss the main differences of this approach to classical numerical modeling and highlight several cases where the network...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2021-11, Vol.118 (47), p.1-10 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c443t-f6c650c29084ce30b47ec41609844231c0fe8b996f6bba9689042f80e8f900973 |
---|---|
cites | cdi_FETCH-LOGICAL-c443t-f6c650c29084ce30b47ec41609844231c0fe8b996f6bba9689042f80e8f900973 |
container_end_page | 10 |
container_issue | 47 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Ludescher, Josef Martin, Maria Boers, Niklas Bunde, Armin Ciemer, Catrin Fan, Jingfang Havlin, Shlomo Kretschmer, Marlene Kurths, Jürgen Runge, Jakob Stolbova, Veronika Surovyatkina, Elena Schellnhuber, Hans Joachim |
description | Network theory, as emerging from complex systems science, can provide critical predictive power for mitigating the global warming crisis and other societal challenges. Here we discuss the main differences of this approach to classical numerical modeling and highlight several cases where the network approach substantially improved the prediction of high-impact phenomena: 1) El Niño events, 2) droughts in the central Amazon, 3) extreme rainfall in the eastern Central Andes, 4) the Indian summer monsoon, and 5) extreme stratospheric polar vortex states that influence the occurrence of wintertime cold spells in northern Eurasia. In this perspective, we argue that network-based approaches can gainfully complement numerical modeling. |
doi_str_mv | 10.1073/pnas.1922872118 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8617481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27093958</jstor_id><sourcerecordid>27093958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-f6c650c29084ce30b47ec41609844231c0fe8b996f6bba9689042f80e8f900973</originalsourceid><addsrcrecordid>eNpVkE1PAjEQhhujEUTPnjSbeF6Yfmy3vZgY4ldC9KLnpltaWITt2i4a_70lIOppDvPMO28ehM4xDDGUdNQ2Og6xJESUBGNxgPoYJM45k3CI-gCkzAUjrIdOYlwAgCwEHKMeZaUgrCj6aPhku08f3vJKRzvNnA_W6NjVzSzzLjPLeqU7m7Vz2_iVbfQpOnJ6Ge3Zbg7Q693ty_ghnzzfP45vJrlhjHa544YXYIgEwYylULHSGoY5SMEYodiAs6KSkjteVVpyIYERJ8AKJ1PJkg7Q9Ta3XVcrOzW26YJeqjakPuFLeV2r_5umnquZ_1CC45IJnAKudgHBv69t7NTCr0OTOivCk5ZUjMpEjbaUCT7GYN3-Awa1Eaw2gtWv4HRx-bfYnv8xmoCLLbCInQ_7ffooabJPvwFJR3_6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602708439</pqid></control><display><type>article</type><title>Network-based forecasting of climate phenomena</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Ludescher, Josef ; Martin, Maria ; Boers, Niklas ; Bunde, Armin ; Ciemer, Catrin ; Fan, Jingfang ; Havlin, Shlomo ; Kretschmer, Marlene ; Kurths, Jürgen ; Runge, Jakob ; Stolbova, Veronika ; Surovyatkina, Elena ; Schellnhuber, Hans Joachim</creator><creatorcontrib>Ludescher, Josef ; Martin, Maria ; Boers, Niklas ; Bunde, Armin ; Ciemer, Catrin ; Fan, Jingfang ; Havlin, Shlomo ; Kretschmer, Marlene ; Kurths, Jürgen ; Runge, Jakob ; Stolbova, Veronika ; Surovyatkina, Elena ; Schellnhuber, Hans Joachim</creatorcontrib><description>Network theory, as emerging from complex systems science, can provide critical predictive power for mitigating the global warming crisis and other societal challenges. Here we discuss the main differences of this approach to classical numerical modeling and highlight several cases where the network approach substantially improved the prediction of high-impact phenomena: 1) El Niño events, 2) droughts in the central Amazon, 3) extreme rainfall in the eastern Central Andes, 4) the Indian summer monsoon, and 5) extreme stratospheric polar vortex states that influence the occurrence of wintertime cold spells in northern Eurasia. In this perspective, we argue that network-based approaches can gainfully complement numerical modeling.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1922872118</identifier><identifier>PMID: 34782455</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Climate change ; Complex systems ; Drought ; El Nino ; Extreme weather ; Global warming ; Mathematical models ; PERSPECTIVE ; Physical Sciences ; Polar vortex ; Rainfall</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-11, Vol.118 (47), p.1-10</ispartof><rights>Copyright National Academy of Sciences Nov 23, 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-f6c650c29084ce30b47ec41609844231c0fe8b996f6bba9689042f80e8f900973</citedby><cites>FETCH-LOGICAL-c443t-f6c650c29084ce30b47ec41609844231c0fe8b996f6bba9689042f80e8f900973</cites><orcidid>0000-0002-5574-3827 ; 0000-0001-5136-4988 ; 0000-0003-1954-4641 ; 0000-0002-9974-5920 ; 0000-0002-1443-0891 ; 0000-0002-4092-3761 ; 0000-0002-1239-9034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27093958$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27093958$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34782455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ludescher, Josef</creatorcontrib><creatorcontrib>Martin, Maria</creatorcontrib><creatorcontrib>Boers, Niklas</creatorcontrib><creatorcontrib>Bunde, Armin</creatorcontrib><creatorcontrib>Ciemer, Catrin</creatorcontrib><creatorcontrib>Fan, Jingfang</creatorcontrib><creatorcontrib>Havlin, Shlomo</creatorcontrib><creatorcontrib>Kretschmer, Marlene</creatorcontrib><creatorcontrib>Kurths, Jürgen</creatorcontrib><creatorcontrib>Runge, Jakob</creatorcontrib><creatorcontrib>Stolbova, Veronika</creatorcontrib><creatorcontrib>Surovyatkina, Elena</creatorcontrib><creatorcontrib>Schellnhuber, Hans Joachim</creatorcontrib><title>Network-based forecasting of climate phenomena</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Network theory, as emerging from complex systems science, can provide critical predictive power for mitigating the global warming crisis and other societal challenges. Here we discuss the main differences of this approach to classical numerical modeling and highlight several cases where the network approach substantially improved the prediction of high-impact phenomena: 1) El Niño events, 2) droughts in the central Amazon, 3) extreme rainfall in the eastern Central Andes, 4) the Indian summer monsoon, and 5) extreme stratospheric polar vortex states that influence the occurrence of wintertime cold spells in northern Eurasia. In this perspective, we argue that network-based approaches can gainfully complement numerical modeling.</description><subject>Climate change</subject><subject>Complex systems</subject><subject>Drought</subject><subject>El Nino</subject><subject>Extreme weather</subject><subject>Global warming</subject><subject>Mathematical models</subject><subject>PERSPECTIVE</subject><subject>Physical Sciences</subject><subject>Polar vortex</subject><subject>Rainfall</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkE1PAjEQhhujEUTPnjSbeF6Yfmy3vZgY4ldC9KLnpltaWITt2i4a_70lIOppDvPMO28ehM4xDDGUdNQ2Og6xJESUBGNxgPoYJM45k3CI-gCkzAUjrIdOYlwAgCwEHKMeZaUgrCj6aPhku08f3vJKRzvNnA_W6NjVzSzzLjPLeqU7m7Vz2_iVbfQpOnJ6Ge3Zbg7Q693ty_ghnzzfP45vJrlhjHa544YXYIgEwYylULHSGoY5SMEYodiAs6KSkjteVVpyIYERJ8AKJ1PJkg7Q9Ta3XVcrOzW26YJeqjakPuFLeV2r_5umnquZ_1CC45IJnAKudgHBv69t7NTCr0OTOivCk5ZUjMpEjbaUCT7GYN3-Awa1Eaw2gtWv4HRx-bfYnv8xmoCLLbCInQ_7ffooabJPvwFJR3_6</recordid><startdate>20211123</startdate><enddate>20211123</enddate><creator>Ludescher, Josef</creator><creator>Martin, Maria</creator><creator>Boers, Niklas</creator><creator>Bunde, Armin</creator><creator>Ciemer, Catrin</creator><creator>Fan, Jingfang</creator><creator>Havlin, Shlomo</creator><creator>Kretschmer, Marlene</creator><creator>Kurths, Jürgen</creator><creator>Runge, Jakob</creator><creator>Stolbova, Veronika</creator><creator>Surovyatkina, Elena</creator><creator>Schellnhuber, Hans Joachim</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5574-3827</orcidid><orcidid>https://orcid.org/0000-0001-5136-4988</orcidid><orcidid>https://orcid.org/0000-0003-1954-4641</orcidid><orcidid>https://orcid.org/0000-0002-9974-5920</orcidid><orcidid>https://orcid.org/0000-0002-1443-0891</orcidid><orcidid>https://orcid.org/0000-0002-4092-3761</orcidid><orcidid>https://orcid.org/0000-0002-1239-9034</orcidid></search><sort><creationdate>20211123</creationdate><title>Network-based forecasting of climate phenomena</title><author>Ludescher, Josef ; Martin, Maria ; Boers, Niklas ; Bunde, Armin ; Ciemer, Catrin ; Fan, Jingfang ; Havlin, Shlomo ; Kretschmer, Marlene ; Kurths, Jürgen ; Runge, Jakob ; Stolbova, Veronika ; Surovyatkina, Elena ; Schellnhuber, Hans Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-f6c650c29084ce30b47ec41609844231c0fe8b996f6bba9689042f80e8f900973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Climate change</topic><topic>Complex systems</topic><topic>Drought</topic><topic>El Nino</topic><topic>Extreme weather</topic><topic>Global warming</topic><topic>Mathematical models</topic><topic>PERSPECTIVE</topic><topic>Physical Sciences</topic><topic>Polar vortex</topic><topic>Rainfall</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ludescher, Josef</creatorcontrib><creatorcontrib>Martin, Maria</creatorcontrib><creatorcontrib>Boers, Niklas</creatorcontrib><creatorcontrib>Bunde, Armin</creatorcontrib><creatorcontrib>Ciemer, Catrin</creatorcontrib><creatorcontrib>Fan, Jingfang</creatorcontrib><creatorcontrib>Havlin, Shlomo</creatorcontrib><creatorcontrib>Kretschmer, Marlene</creatorcontrib><creatorcontrib>Kurths, Jürgen</creatorcontrib><creatorcontrib>Runge, Jakob</creatorcontrib><creatorcontrib>Stolbova, Veronika</creatorcontrib><creatorcontrib>Surovyatkina, Elena</creatorcontrib><creatorcontrib>Schellnhuber, Hans Joachim</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ludescher, Josef</au><au>Martin, Maria</au><au>Boers, Niklas</au><au>Bunde, Armin</au><au>Ciemer, Catrin</au><au>Fan, Jingfang</au><au>Havlin, Shlomo</au><au>Kretschmer, Marlene</au><au>Kurths, Jürgen</au><au>Runge, Jakob</au><au>Stolbova, Veronika</au><au>Surovyatkina, Elena</au><au>Schellnhuber, Hans Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network-based forecasting of climate phenomena</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-11-23</date><risdate>2021</risdate><volume>118</volume><issue>47</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Network theory, as emerging from complex systems science, can provide critical predictive power for mitigating the global warming crisis and other societal challenges. Here we discuss the main differences of this approach to classical numerical modeling and highlight several cases where the network approach substantially improved the prediction of high-impact phenomena: 1) El Niño events, 2) droughts in the central Amazon, 3) extreme rainfall in the eastern Central Andes, 4) the Indian summer monsoon, and 5) extreme stratospheric polar vortex states that influence the occurrence of wintertime cold spells in northern Eurasia. In this perspective, we argue that network-based approaches can gainfully complement numerical modeling.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34782455</pmid><doi>10.1073/pnas.1922872118</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5574-3827</orcidid><orcidid>https://orcid.org/0000-0001-5136-4988</orcidid><orcidid>https://orcid.org/0000-0003-1954-4641</orcidid><orcidid>https://orcid.org/0000-0002-9974-5920</orcidid><orcidid>https://orcid.org/0000-0002-1443-0891</orcidid><orcidid>https://orcid.org/0000-0002-4092-3761</orcidid><orcidid>https://orcid.org/0000-0002-1239-9034</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-11, Vol.118 (47), p.1-10 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8617481 |
source | Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection |
subjects | Climate change Complex systems Drought El Nino Extreme weather Global warming Mathematical models PERSPECTIVE Physical Sciences Polar vortex Rainfall |
title | Network-based forecasting of climate phenomena |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network-based%20forecasting%20of%20climate%20phenomena&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ludescher,%20Josef&rft.date=2021-11-23&rft.volume=118&rft.issue=47&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1922872118&rft_dat=%3Cjstor_pubme%3E27093958%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-f6c650c29084ce30b47ec41609844231c0fe8b996f6bba9689042f80e8f900973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2602708439&rft_id=info:pmid/34782455&rft_jstor_id=27093958&rfr_iscdi=true |