Loading…
Aristolochic Acid Induces Renal Fibrosis and Senescence in Mice
The kidney is one of the most susceptible organs to age-related impairments. Generally, renal aging is accompanied by renal fibrosis, which is the final common pathway of chronic kidney diseases. Aristolochic acid (AA), a nephrotoxic agent, causes AA nephropathy (AAN), which is characterized by prog...
Saved in:
Published in: | International journal of molecular sciences 2021-11, Vol.22 (22), p.12432 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c481t-667af215eae47d9cff517e90397fb97f533abb2b96ff01ddd8c82ef2acc4b80d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c481t-667af215eae47d9cff517e90397fb97f533abb2b96ff01ddd8c82ef2acc4b80d3 |
container_end_page | |
container_issue | 22 |
container_start_page | 12432 |
container_title | International journal of molecular sciences |
container_volume | 22 |
creator | Urate, Shingo Wakui, Hiromichi Azushima, Kengo Yamaji, Takahiro Suzuki, Toru Abe, Eriko Tanaka, Shohei Taguchi, Shinya Tsukamoto, Shunichiro Kinguchi, Sho Uneda, Kazushi Kanaoka, Tomohiko Atobe, Yoshitoshi Funakoshi, Kengo Yamashita, Akio Tamura, Kouichi |
description | The kidney is one of the most susceptible organs to age-related impairments. Generally, renal aging is accompanied by renal fibrosis, which is the final common pathway of chronic kidney diseases. Aristolochic acid (AA), a nephrotoxic agent, causes AA nephropathy (AAN), which is characterized by progressive renal fibrosis and functional decline. Although renal fibrosis is associated with renal aging, whether AA induces renal aging remains unclear. The aim of the present study is to investigate the potential use of AAN as a model of renal aging. Here, we examined senescence-related factors in AAN models by chronically administering AA to C57BL/6 mice. Compared with controls, the AA group demonstrated aging kidney phenotypes, such as renal atrophy, renal functional decline, and tubulointerstitial fibrosis. Additionally, AA promoted cellular senescence specifically in the kidneys, and increased renal p16 mRNA expression and senescence-associated β-galactosidase activity. Furthermore, AA-treated mice exhibited proximal tubular mitochondrial abnormalities, as well as reactive oxygen species accumulation. Klotho, an antiaging gene, was also significantly decreased in the kidneys of AA-treated mice. Collectively, the results of the present study indicate that AA alters senescence-related factors, and that renal fibrosis is closely related to renal aging. |
doi_str_mv | 10.3390/ijms222212432 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8618437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604020534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-667af215eae47d9cff517e90397fb97f533abb2b96ff01ddd8c82ef2acc4b80d3</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMotlaXbiXgxs1oXvPaKKVYLVQEH-uQycOmzExqMiP47422Smvgkgv343DvOQCcYnRJaYmu7LIJJD5MGCV7YIgZIQlCWb6_1Q_AUQhLhAglaXkIBpQVFFHMhuBm7G3oXO3kwko4llbBWat6qQN80q2o4dRW3gUboGgVfNatDlK3UkPbwgcr9TE4MKIO-mTzj8Dr9PZlcp_MH-9mk_E8kazAXZJluTAEp1polqtSGpPiXJeIlrmpYqWUiqoiVZkZg7BSqpAF0YYIKVlVIEVH4Hqtu-qrRqu4Q-dFzVfeNsJ_cics3520dsHf3AcvMlwwmkeBi42Ad--9Dh1vbDylrkWrXR84yRBDBKWURfT8H7p0vY9m_FDRaYpQEalkTcnoT_Da_C2DEf-Ohu9EE_mz7Qv-6N8s6BdQGYon</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602123008</pqid></control><display><type>article</type><title>Aristolochic Acid Induces Renal Fibrosis and Senescence in Mice</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Urate, Shingo ; Wakui, Hiromichi ; Azushima, Kengo ; Yamaji, Takahiro ; Suzuki, Toru ; Abe, Eriko ; Tanaka, Shohei ; Taguchi, Shinya ; Tsukamoto, Shunichiro ; Kinguchi, Sho ; Uneda, Kazushi ; Kanaoka, Tomohiko ; Atobe, Yoshitoshi ; Funakoshi, Kengo ; Yamashita, Akio ; Tamura, Kouichi</creator><creatorcontrib>Urate, Shingo ; Wakui, Hiromichi ; Azushima, Kengo ; Yamaji, Takahiro ; Suzuki, Toru ; Abe, Eriko ; Tanaka, Shohei ; Taguchi, Shinya ; Tsukamoto, Shunichiro ; Kinguchi, Sho ; Uneda, Kazushi ; Kanaoka, Tomohiko ; Atobe, Yoshitoshi ; Funakoshi, Kengo ; Yamashita, Akio ; Tamura, Kouichi</creatorcontrib><description>The kidney is one of the most susceptible organs to age-related impairments. Generally, renal aging is accompanied by renal fibrosis, which is the final common pathway of chronic kidney diseases. Aristolochic acid (AA), a nephrotoxic agent, causes AA nephropathy (AAN), which is characterized by progressive renal fibrosis and functional decline. Although renal fibrosis is associated with renal aging, whether AA induces renal aging remains unclear. The aim of the present study is to investigate the potential use of AAN as a model of renal aging. Here, we examined senescence-related factors in AAN models by chronically administering AA to C57BL/6 mice. Compared with controls, the AA group demonstrated aging kidney phenotypes, such as renal atrophy, renal functional decline, and tubulointerstitial fibrosis. Additionally, AA promoted cellular senescence specifically in the kidneys, and increased renal p16 mRNA expression and senescence-associated β-galactosidase activity. Furthermore, AA-treated mice exhibited proximal tubular mitochondrial abnormalities, as well as reactive oxygen species accumulation. Klotho, an antiaging gene, was also significantly decreased in the kidneys of AA-treated mice. Collectively, the results of the present study indicate that AA alters senescence-related factors, and that renal fibrosis is closely related to renal aging.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms222212432</identifier><identifier>PMID: 34830314</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Abnormalities ; Age ; Aging ; Aging - drug effects ; Aging - genetics ; Animals ; Aristolochic acid ; Aristolochic Acids - pharmacology ; Atrophy ; beta-Galactosidase - genetics ; beta-Galactosidase - metabolism ; Collagen - agonists ; Collagen - genetics ; Collagen - metabolism ; Creatinine ; Cyclin-Dependent Kinase Inhibitor p16 - genetics ; Cyclin-Dependent Kinase Inhibitor p16 - metabolism ; Cyclin-dependent kinases ; Disease Models, Animal ; Fibrosis ; Galactosidase ; Gene expression ; Gene Expression Regulation ; Genetic engineering ; Humans ; Hypoxia ; Kidney - drug effects ; Kidney - metabolism ; Kidney - pathology ; Kidney diseases ; Kidneys ; Kinases ; Klotho protein ; Klotho Proteins - genetics ; Klotho Proteins - metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Microscopy ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondria - pathology ; Nephritis, Interstitial - chemically induced ; Nephritis, Interstitial - genetics ; Nephritis, Interstitial - metabolism ; Nephritis, Interstitial - pathology ; Nephropathy ; Organs ; Oxidative stress ; Phenotypes ; Proteins ; Reactive oxygen species ; Reactive Oxygen Species - agonists ; Reactive Oxygen Species - metabolism ; Renal Insufficiency, Chronic - chemically induced ; Renal Insufficiency, Chronic - genetics ; Renal Insufficiency, Chronic - metabolism ; Renal Insufficiency, Chronic - pathology ; Senescence ; Signal Transduction ; Transforming Growth Factor beta - agonists ; Transforming Growth Factor beta - genetics ; Transforming Growth Factor beta - metabolism ; β-Galactosidase</subject><ispartof>International journal of molecular sciences, 2021-11, Vol.22 (22), p.12432</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-667af215eae47d9cff517e90397fb97f533abb2b96ff01ddd8c82ef2acc4b80d3</citedby><cites>FETCH-LOGICAL-c481t-667af215eae47d9cff517e90397fb97f533abb2b96ff01ddd8c82ef2acc4b80d3</cites><orcidid>0000-0002-4540-125X ; 0000-0002-5136-0730</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2602123008?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2602123008?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,38493,43871,44566,53766,53768,74155,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34830314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Urate, Shingo</creatorcontrib><creatorcontrib>Wakui, Hiromichi</creatorcontrib><creatorcontrib>Azushima, Kengo</creatorcontrib><creatorcontrib>Yamaji, Takahiro</creatorcontrib><creatorcontrib>Suzuki, Toru</creatorcontrib><creatorcontrib>Abe, Eriko</creatorcontrib><creatorcontrib>Tanaka, Shohei</creatorcontrib><creatorcontrib>Taguchi, Shinya</creatorcontrib><creatorcontrib>Tsukamoto, Shunichiro</creatorcontrib><creatorcontrib>Kinguchi, Sho</creatorcontrib><creatorcontrib>Uneda, Kazushi</creatorcontrib><creatorcontrib>Kanaoka, Tomohiko</creatorcontrib><creatorcontrib>Atobe, Yoshitoshi</creatorcontrib><creatorcontrib>Funakoshi, Kengo</creatorcontrib><creatorcontrib>Yamashita, Akio</creatorcontrib><creatorcontrib>Tamura, Kouichi</creatorcontrib><title>Aristolochic Acid Induces Renal Fibrosis and Senescence in Mice</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>The kidney is one of the most susceptible organs to age-related impairments. Generally, renal aging is accompanied by renal fibrosis, which is the final common pathway of chronic kidney diseases. Aristolochic acid (AA), a nephrotoxic agent, causes AA nephropathy (AAN), which is characterized by progressive renal fibrosis and functional decline. Although renal fibrosis is associated with renal aging, whether AA induces renal aging remains unclear. The aim of the present study is to investigate the potential use of AAN as a model of renal aging. Here, we examined senescence-related factors in AAN models by chronically administering AA to C57BL/6 mice. Compared with controls, the AA group demonstrated aging kidney phenotypes, such as renal atrophy, renal functional decline, and tubulointerstitial fibrosis. Additionally, AA promoted cellular senescence specifically in the kidneys, and increased renal p16 mRNA expression and senescence-associated β-galactosidase activity. Furthermore, AA-treated mice exhibited proximal tubular mitochondrial abnormalities, as well as reactive oxygen species accumulation. Klotho, an antiaging gene, was also significantly decreased in the kidneys of AA-treated mice. Collectively, the results of the present study indicate that AA alters senescence-related factors, and that renal fibrosis is closely related to renal aging.</description><subject>Abnormalities</subject><subject>Age</subject><subject>Aging</subject><subject>Aging - drug effects</subject><subject>Aging - genetics</subject><subject>Animals</subject><subject>Aristolochic acid</subject><subject>Aristolochic Acids - pharmacology</subject><subject>Atrophy</subject><subject>beta-Galactosidase - genetics</subject><subject>beta-Galactosidase - metabolism</subject><subject>Collagen - agonists</subject><subject>Collagen - genetics</subject><subject>Collagen - metabolism</subject><subject>Creatinine</subject><subject>Cyclin-Dependent Kinase Inhibitor p16 - genetics</subject><subject>Cyclin-Dependent Kinase Inhibitor p16 - metabolism</subject><subject>Cyclin-dependent kinases</subject><subject>Disease Models, Animal</subject><subject>Fibrosis</subject><subject>Galactosidase</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Genetic engineering</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Kidney - drug effects</subject><subject>Kidney - metabolism</subject><subject>Kidney - pathology</subject><subject>Kidney diseases</subject><subject>Kidneys</subject><subject>Kinases</subject><subject>Klotho protein</subject><subject>Klotho Proteins - genetics</subject><subject>Klotho Proteins - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microscopy</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Nephritis, Interstitial - chemically induced</subject><subject>Nephritis, Interstitial - genetics</subject><subject>Nephritis, Interstitial - metabolism</subject><subject>Nephritis, Interstitial - pathology</subject><subject>Nephropathy</subject><subject>Organs</subject><subject>Oxidative stress</subject><subject>Phenotypes</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - agonists</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Renal Insufficiency, Chronic - chemically induced</subject><subject>Renal Insufficiency, Chronic - genetics</subject><subject>Renal Insufficiency, Chronic - metabolism</subject><subject>Renal Insufficiency, Chronic - pathology</subject><subject>Senescence</subject><subject>Signal Transduction</subject><subject>Transforming Growth Factor beta - agonists</subject><subject>Transforming Growth Factor beta - genetics</subject><subject>Transforming Growth Factor beta - metabolism</subject><subject>β-Galactosidase</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><recordid>eNpdkUtLAzEUhYMotlaXbiXgxs1oXvPaKKVYLVQEH-uQycOmzExqMiP47422Smvgkgv343DvOQCcYnRJaYmu7LIJJD5MGCV7YIgZIQlCWb6_1Q_AUQhLhAglaXkIBpQVFFHMhuBm7G3oXO3kwko4llbBWat6qQN80q2o4dRW3gUboGgVfNatDlK3UkPbwgcr9TE4MKIO-mTzj8Dr9PZlcp_MH-9mk_E8kazAXZJluTAEp1polqtSGpPiXJeIlrmpYqWUiqoiVZkZg7BSqpAF0YYIKVlVIEVH4Hqtu-qrRqu4Q-dFzVfeNsJ_cics3520dsHf3AcvMlwwmkeBi42Ad--9Dh1vbDylrkWrXR84yRBDBKWURfT8H7p0vY9m_FDRaYpQEalkTcnoT_Da_C2DEf-Ohu9EE_mz7Qv-6N8s6BdQGYon</recordid><startdate>20211118</startdate><enddate>20211118</enddate><creator>Urate, Shingo</creator><creator>Wakui, Hiromichi</creator><creator>Azushima, Kengo</creator><creator>Yamaji, Takahiro</creator><creator>Suzuki, Toru</creator><creator>Abe, Eriko</creator><creator>Tanaka, Shohei</creator><creator>Taguchi, Shinya</creator><creator>Tsukamoto, Shunichiro</creator><creator>Kinguchi, Sho</creator><creator>Uneda, Kazushi</creator><creator>Kanaoka, Tomohiko</creator><creator>Atobe, Yoshitoshi</creator><creator>Funakoshi, Kengo</creator><creator>Yamashita, Akio</creator><creator>Tamura, Kouichi</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4540-125X</orcidid><orcidid>https://orcid.org/0000-0002-5136-0730</orcidid></search><sort><creationdate>20211118</creationdate><title>Aristolochic Acid Induces Renal Fibrosis and Senescence in Mice</title><author>Urate, Shingo ; Wakui, Hiromichi ; Azushima, Kengo ; Yamaji, Takahiro ; Suzuki, Toru ; Abe, Eriko ; Tanaka, Shohei ; Taguchi, Shinya ; Tsukamoto, Shunichiro ; Kinguchi, Sho ; Uneda, Kazushi ; Kanaoka, Tomohiko ; Atobe, Yoshitoshi ; Funakoshi, Kengo ; Yamashita, Akio ; Tamura, Kouichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-667af215eae47d9cff517e90397fb97f533abb2b96ff01ddd8c82ef2acc4b80d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abnormalities</topic><topic>Age</topic><topic>Aging</topic><topic>Aging - drug effects</topic><topic>Aging - genetics</topic><topic>Animals</topic><topic>Aristolochic acid</topic><topic>Aristolochic Acids - pharmacology</topic><topic>Atrophy</topic><topic>beta-Galactosidase - genetics</topic><topic>beta-Galactosidase - metabolism</topic><topic>Collagen - agonists</topic><topic>Collagen - genetics</topic><topic>Collagen - metabolism</topic><topic>Creatinine</topic><topic>Cyclin-Dependent Kinase Inhibitor p16 - genetics</topic><topic>Cyclin-Dependent Kinase Inhibitor p16 - metabolism</topic><topic>Cyclin-dependent kinases</topic><topic>Disease Models, Animal</topic><topic>Fibrosis</topic><topic>Galactosidase</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Genetic engineering</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Kidney - drug effects</topic><topic>Kidney - metabolism</topic><topic>Kidney - pathology</topic><topic>Kidney diseases</topic><topic>Kidneys</topic><topic>Kinases</topic><topic>Klotho protein</topic><topic>Klotho Proteins - genetics</topic><topic>Klotho Proteins - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microscopy</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Nephritis, Interstitial - chemically induced</topic><topic>Nephritis, Interstitial - genetics</topic><topic>Nephritis, Interstitial - metabolism</topic><topic>Nephritis, Interstitial - pathology</topic><topic>Nephropathy</topic><topic>Organs</topic><topic>Oxidative stress</topic><topic>Phenotypes</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - agonists</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Renal Insufficiency, Chronic - chemically induced</topic><topic>Renal Insufficiency, Chronic - genetics</topic><topic>Renal Insufficiency, Chronic - metabolism</topic><topic>Renal Insufficiency, Chronic - pathology</topic><topic>Senescence</topic><topic>Signal Transduction</topic><topic>Transforming Growth Factor beta - agonists</topic><topic>Transforming Growth Factor beta - genetics</topic><topic>Transforming Growth Factor beta - metabolism</topic><topic>β-Galactosidase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Urate, Shingo</creatorcontrib><creatorcontrib>Wakui, Hiromichi</creatorcontrib><creatorcontrib>Azushima, Kengo</creatorcontrib><creatorcontrib>Yamaji, Takahiro</creatorcontrib><creatorcontrib>Suzuki, Toru</creatorcontrib><creatorcontrib>Abe, Eriko</creatorcontrib><creatorcontrib>Tanaka, Shohei</creatorcontrib><creatorcontrib>Taguchi, Shinya</creatorcontrib><creatorcontrib>Tsukamoto, Shunichiro</creatorcontrib><creatorcontrib>Kinguchi, Sho</creatorcontrib><creatorcontrib>Uneda, Kazushi</creatorcontrib><creatorcontrib>Kanaoka, Tomohiko</creatorcontrib><creatorcontrib>Atobe, Yoshitoshi</creatorcontrib><creatorcontrib>Funakoshi, Kengo</creatorcontrib><creatorcontrib>Yamashita, Akio</creatorcontrib><creatorcontrib>Tamura, Kouichi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Urate, Shingo</au><au>Wakui, Hiromichi</au><au>Azushima, Kengo</au><au>Yamaji, Takahiro</au><au>Suzuki, Toru</au><au>Abe, Eriko</au><au>Tanaka, Shohei</au><au>Taguchi, Shinya</au><au>Tsukamoto, Shunichiro</au><au>Kinguchi, Sho</au><au>Uneda, Kazushi</au><au>Kanaoka, Tomohiko</au><au>Atobe, Yoshitoshi</au><au>Funakoshi, Kengo</au><au>Yamashita, Akio</au><au>Tamura, Kouichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aristolochic Acid Induces Renal Fibrosis and Senescence in Mice</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2021-11-18</date><risdate>2021</risdate><volume>22</volume><issue>22</issue><spage>12432</spage><pages>12432-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>The kidney is one of the most susceptible organs to age-related impairments. Generally, renal aging is accompanied by renal fibrosis, which is the final common pathway of chronic kidney diseases. Aristolochic acid (AA), a nephrotoxic agent, causes AA nephropathy (AAN), which is characterized by progressive renal fibrosis and functional decline. Although renal fibrosis is associated with renal aging, whether AA induces renal aging remains unclear. The aim of the present study is to investigate the potential use of AAN as a model of renal aging. Here, we examined senescence-related factors in AAN models by chronically administering AA to C57BL/6 mice. Compared with controls, the AA group demonstrated aging kidney phenotypes, such as renal atrophy, renal functional decline, and tubulointerstitial fibrosis. Additionally, AA promoted cellular senescence specifically in the kidneys, and increased renal p16 mRNA expression and senescence-associated β-galactosidase activity. Furthermore, AA-treated mice exhibited proximal tubular mitochondrial abnormalities, as well as reactive oxygen species accumulation. Klotho, an antiaging gene, was also significantly decreased in the kidneys of AA-treated mice. Collectively, the results of the present study indicate that AA alters senescence-related factors, and that renal fibrosis is closely related to renal aging.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34830314</pmid><doi>10.3390/ijms222212432</doi><orcidid>https://orcid.org/0000-0002-4540-125X</orcidid><orcidid>https://orcid.org/0000-0002-5136-0730</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2021-11, Vol.22 (22), p.12432 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8618437 |
source | PubMed Central (Open Access); Publicly Available Content Database; Coronavirus Research Database |
subjects | Abnormalities Age Aging Aging - drug effects Aging - genetics Animals Aristolochic acid Aristolochic Acids - pharmacology Atrophy beta-Galactosidase - genetics beta-Galactosidase - metabolism Collagen - agonists Collagen - genetics Collagen - metabolism Creatinine Cyclin-Dependent Kinase Inhibitor p16 - genetics Cyclin-Dependent Kinase Inhibitor p16 - metabolism Cyclin-dependent kinases Disease Models, Animal Fibrosis Galactosidase Gene expression Gene Expression Regulation Genetic engineering Humans Hypoxia Kidney - drug effects Kidney - metabolism Kidney - pathology Kidney diseases Kidneys Kinases Klotho protein Klotho Proteins - genetics Klotho Proteins - metabolism Male Mice Mice, Inbred C57BL Microscopy Mitochondria Mitochondria - drug effects Mitochondria - metabolism Mitochondria - pathology Nephritis, Interstitial - chemically induced Nephritis, Interstitial - genetics Nephritis, Interstitial - metabolism Nephritis, Interstitial - pathology Nephropathy Organs Oxidative stress Phenotypes Proteins Reactive oxygen species Reactive Oxygen Species - agonists Reactive Oxygen Species - metabolism Renal Insufficiency, Chronic - chemically induced Renal Insufficiency, Chronic - genetics Renal Insufficiency, Chronic - metabolism Renal Insufficiency, Chronic - pathology Senescence Signal Transduction Transforming Growth Factor beta - agonists Transforming Growth Factor beta - genetics Transforming Growth Factor beta - metabolism β-Galactosidase |
title | Aristolochic Acid Induces Renal Fibrosis and Senescence in Mice |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A13%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aristolochic%20Acid%20Induces%20Renal%20Fibrosis%20and%20Senescence%20in%20Mice&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Urate,%20Shingo&rft.date=2021-11-18&rft.volume=22&rft.issue=22&rft.spage=12432&rft.pages=12432-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms222212432&rft_dat=%3Cproquest_pubme%3E2604020534%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c481t-667af215eae47d9cff517e90397fb97f533abb2b96ff01ddd8c82ef2acc4b80d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2602123008&rft_id=info:pmid/34830314&rfr_iscdi=true |