Loading…

Aristolochic Acid Induces Renal Fibrosis and Senescence in Mice

The kidney is one of the most susceptible organs to age-related impairments. Generally, renal aging is accompanied by renal fibrosis, which is the final common pathway of chronic kidney diseases. Aristolochic acid (AA), a nephrotoxic agent, causes AA nephropathy (AAN), which is characterized by prog...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2021-11, Vol.22 (22), p.12432
Main Authors: Urate, Shingo, Wakui, Hiromichi, Azushima, Kengo, Yamaji, Takahiro, Suzuki, Toru, Abe, Eriko, Tanaka, Shohei, Taguchi, Shinya, Tsukamoto, Shunichiro, Kinguchi, Sho, Uneda, Kazushi, Kanaoka, Tomohiko, Atobe, Yoshitoshi, Funakoshi, Kengo, Yamashita, Akio, Tamura, Kouichi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c481t-667af215eae47d9cff517e90397fb97f533abb2b96ff01ddd8c82ef2acc4b80d3
cites cdi_FETCH-LOGICAL-c481t-667af215eae47d9cff517e90397fb97f533abb2b96ff01ddd8c82ef2acc4b80d3
container_end_page
container_issue 22
container_start_page 12432
container_title International journal of molecular sciences
container_volume 22
creator Urate, Shingo
Wakui, Hiromichi
Azushima, Kengo
Yamaji, Takahiro
Suzuki, Toru
Abe, Eriko
Tanaka, Shohei
Taguchi, Shinya
Tsukamoto, Shunichiro
Kinguchi, Sho
Uneda, Kazushi
Kanaoka, Tomohiko
Atobe, Yoshitoshi
Funakoshi, Kengo
Yamashita, Akio
Tamura, Kouichi
description The kidney is one of the most susceptible organs to age-related impairments. Generally, renal aging is accompanied by renal fibrosis, which is the final common pathway of chronic kidney diseases. Aristolochic acid (AA), a nephrotoxic agent, causes AA nephropathy (AAN), which is characterized by progressive renal fibrosis and functional decline. Although renal fibrosis is associated with renal aging, whether AA induces renal aging remains unclear. The aim of the present study is to investigate the potential use of AAN as a model of renal aging. Here, we examined senescence-related factors in AAN models by chronically administering AA to C57BL/6 mice. Compared with controls, the AA group demonstrated aging kidney phenotypes, such as renal atrophy, renal functional decline, and tubulointerstitial fibrosis. Additionally, AA promoted cellular senescence specifically in the kidneys, and increased renal p16 mRNA expression and senescence-associated β-galactosidase activity. Furthermore, AA-treated mice exhibited proximal tubular mitochondrial abnormalities, as well as reactive oxygen species accumulation. Klotho, an antiaging gene, was also significantly decreased in the kidneys of AA-treated mice. Collectively, the results of the present study indicate that AA alters senescence-related factors, and that renal fibrosis is closely related to renal aging.
doi_str_mv 10.3390/ijms222212432
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8618437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604020534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-667af215eae47d9cff517e90397fb97f533abb2b96ff01ddd8c82ef2acc4b80d3</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMotlaXbiXgxs1oXvPaKKVYLVQEH-uQycOmzExqMiP47422Smvgkgv343DvOQCcYnRJaYmu7LIJJD5MGCV7YIgZIQlCWb6_1Q_AUQhLhAglaXkIBpQVFFHMhuBm7G3oXO3kwko4llbBWat6qQN80q2o4dRW3gUboGgVfNatDlK3UkPbwgcr9TE4MKIO-mTzj8Dr9PZlcp_MH-9mk_E8kazAXZJluTAEp1polqtSGpPiXJeIlrmpYqWUiqoiVZkZg7BSqpAF0YYIKVlVIEVH4Hqtu-qrRqu4Q-dFzVfeNsJ_cics3520dsHf3AcvMlwwmkeBi42Ad--9Dh1vbDylrkWrXR84yRBDBKWURfT8H7p0vY9m_FDRaYpQEalkTcnoT_Da_C2DEf-Ohu9EE_mz7Qv-6N8s6BdQGYon</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602123008</pqid></control><display><type>article</type><title>Aristolochic Acid Induces Renal Fibrosis and Senescence in Mice</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Urate, Shingo ; Wakui, Hiromichi ; Azushima, Kengo ; Yamaji, Takahiro ; Suzuki, Toru ; Abe, Eriko ; Tanaka, Shohei ; Taguchi, Shinya ; Tsukamoto, Shunichiro ; Kinguchi, Sho ; Uneda, Kazushi ; Kanaoka, Tomohiko ; Atobe, Yoshitoshi ; Funakoshi, Kengo ; Yamashita, Akio ; Tamura, Kouichi</creator><creatorcontrib>Urate, Shingo ; Wakui, Hiromichi ; Azushima, Kengo ; Yamaji, Takahiro ; Suzuki, Toru ; Abe, Eriko ; Tanaka, Shohei ; Taguchi, Shinya ; Tsukamoto, Shunichiro ; Kinguchi, Sho ; Uneda, Kazushi ; Kanaoka, Tomohiko ; Atobe, Yoshitoshi ; Funakoshi, Kengo ; Yamashita, Akio ; Tamura, Kouichi</creatorcontrib><description>The kidney is one of the most susceptible organs to age-related impairments. Generally, renal aging is accompanied by renal fibrosis, which is the final common pathway of chronic kidney diseases. Aristolochic acid (AA), a nephrotoxic agent, causes AA nephropathy (AAN), which is characterized by progressive renal fibrosis and functional decline. Although renal fibrosis is associated with renal aging, whether AA induces renal aging remains unclear. The aim of the present study is to investigate the potential use of AAN as a model of renal aging. Here, we examined senescence-related factors in AAN models by chronically administering AA to C57BL/6 mice. Compared with controls, the AA group demonstrated aging kidney phenotypes, such as renal atrophy, renal functional decline, and tubulointerstitial fibrosis. Additionally, AA promoted cellular senescence specifically in the kidneys, and increased renal p16 mRNA expression and senescence-associated β-galactosidase activity. Furthermore, AA-treated mice exhibited proximal tubular mitochondrial abnormalities, as well as reactive oxygen species accumulation. Klotho, an antiaging gene, was also significantly decreased in the kidneys of AA-treated mice. Collectively, the results of the present study indicate that AA alters senescence-related factors, and that renal fibrosis is closely related to renal aging.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms222212432</identifier><identifier>PMID: 34830314</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Abnormalities ; Age ; Aging ; Aging - drug effects ; Aging - genetics ; Animals ; Aristolochic acid ; Aristolochic Acids - pharmacology ; Atrophy ; beta-Galactosidase - genetics ; beta-Galactosidase - metabolism ; Collagen - agonists ; Collagen - genetics ; Collagen - metabolism ; Creatinine ; Cyclin-Dependent Kinase Inhibitor p16 - genetics ; Cyclin-Dependent Kinase Inhibitor p16 - metabolism ; Cyclin-dependent kinases ; Disease Models, Animal ; Fibrosis ; Galactosidase ; Gene expression ; Gene Expression Regulation ; Genetic engineering ; Humans ; Hypoxia ; Kidney - drug effects ; Kidney - metabolism ; Kidney - pathology ; Kidney diseases ; Kidneys ; Kinases ; Klotho protein ; Klotho Proteins - genetics ; Klotho Proteins - metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Microscopy ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondria - pathology ; Nephritis, Interstitial - chemically induced ; Nephritis, Interstitial - genetics ; Nephritis, Interstitial - metabolism ; Nephritis, Interstitial - pathology ; Nephropathy ; Organs ; Oxidative stress ; Phenotypes ; Proteins ; Reactive oxygen species ; Reactive Oxygen Species - agonists ; Reactive Oxygen Species - metabolism ; Renal Insufficiency, Chronic - chemically induced ; Renal Insufficiency, Chronic - genetics ; Renal Insufficiency, Chronic - metabolism ; Renal Insufficiency, Chronic - pathology ; Senescence ; Signal Transduction ; Transforming Growth Factor beta - agonists ; Transforming Growth Factor beta - genetics ; Transforming Growth Factor beta - metabolism ; β-Galactosidase</subject><ispartof>International journal of molecular sciences, 2021-11, Vol.22 (22), p.12432</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-667af215eae47d9cff517e90397fb97f533abb2b96ff01ddd8c82ef2acc4b80d3</citedby><cites>FETCH-LOGICAL-c481t-667af215eae47d9cff517e90397fb97f533abb2b96ff01ddd8c82ef2acc4b80d3</cites><orcidid>0000-0002-4540-125X ; 0000-0002-5136-0730</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2602123008?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2602123008?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,38493,43871,44566,53766,53768,74155,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34830314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Urate, Shingo</creatorcontrib><creatorcontrib>Wakui, Hiromichi</creatorcontrib><creatorcontrib>Azushima, Kengo</creatorcontrib><creatorcontrib>Yamaji, Takahiro</creatorcontrib><creatorcontrib>Suzuki, Toru</creatorcontrib><creatorcontrib>Abe, Eriko</creatorcontrib><creatorcontrib>Tanaka, Shohei</creatorcontrib><creatorcontrib>Taguchi, Shinya</creatorcontrib><creatorcontrib>Tsukamoto, Shunichiro</creatorcontrib><creatorcontrib>Kinguchi, Sho</creatorcontrib><creatorcontrib>Uneda, Kazushi</creatorcontrib><creatorcontrib>Kanaoka, Tomohiko</creatorcontrib><creatorcontrib>Atobe, Yoshitoshi</creatorcontrib><creatorcontrib>Funakoshi, Kengo</creatorcontrib><creatorcontrib>Yamashita, Akio</creatorcontrib><creatorcontrib>Tamura, Kouichi</creatorcontrib><title>Aristolochic Acid Induces Renal Fibrosis and Senescence in Mice</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>The kidney is one of the most susceptible organs to age-related impairments. Generally, renal aging is accompanied by renal fibrosis, which is the final common pathway of chronic kidney diseases. Aristolochic acid (AA), a nephrotoxic agent, causes AA nephropathy (AAN), which is characterized by progressive renal fibrosis and functional decline. Although renal fibrosis is associated with renal aging, whether AA induces renal aging remains unclear. The aim of the present study is to investigate the potential use of AAN as a model of renal aging. Here, we examined senescence-related factors in AAN models by chronically administering AA to C57BL/6 mice. Compared with controls, the AA group demonstrated aging kidney phenotypes, such as renal atrophy, renal functional decline, and tubulointerstitial fibrosis. Additionally, AA promoted cellular senescence specifically in the kidneys, and increased renal p16 mRNA expression and senescence-associated β-galactosidase activity. Furthermore, AA-treated mice exhibited proximal tubular mitochondrial abnormalities, as well as reactive oxygen species accumulation. Klotho, an antiaging gene, was also significantly decreased in the kidneys of AA-treated mice. Collectively, the results of the present study indicate that AA alters senescence-related factors, and that renal fibrosis is closely related to renal aging.</description><subject>Abnormalities</subject><subject>Age</subject><subject>Aging</subject><subject>Aging - drug effects</subject><subject>Aging - genetics</subject><subject>Animals</subject><subject>Aristolochic acid</subject><subject>Aristolochic Acids - pharmacology</subject><subject>Atrophy</subject><subject>beta-Galactosidase - genetics</subject><subject>beta-Galactosidase - metabolism</subject><subject>Collagen - agonists</subject><subject>Collagen - genetics</subject><subject>Collagen - metabolism</subject><subject>Creatinine</subject><subject>Cyclin-Dependent Kinase Inhibitor p16 - genetics</subject><subject>Cyclin-Dependent Kinase Inhibitor p16 - metabolism</subject><subject>Cyclin-dependent kinases</subject><subject>Disease Models, Animal</subject><subject>Fibrosis</subject><subject>Galactosidase</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Genetic engineering</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Kidney - drug effects</subject><subject>Kidney - metabolism</subject><subject>Kidney - pathology</subject><subject>Kidney diseases</subject><subject>Kidneys</subject><subject>Kinases</subject><subject>Klotho protein</subject><subject>Klotho Proteins - genetics</subject><subject>Klotho Proteins - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microscopy</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Nephritis, Interstitial - chemically induced</subject><subject>Nephritis, Interstitial - genetics</subject><subject>Nephritis, Interstitial - metabolism</subject><subject>Nephritis, Interstitial - pathology</subject><subject>Nephropathy</subject><subject>Organs</subject><subject>Oxidative stress</subject><subject>Phenotypes</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - agonists</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Renal Insufficiency, Chronic - chemically induced</subject><subject>Renal Insufficiency, Chronic - genetics</subject><subject>Renal Insufficiency, Chronic - metabolism</subject><subject>Renal Insufficiency, Chronic - pathology</subject><subject>Senescence</subject><subject>Signal Transduction</subject><subject>Transforming Growth Factor beta - agonists</subject><subject>Transforming Growth Factor beta - genetics</subject><subject>Transforming Growth Factor beta - metabolism</subject><subject>β-Galactosidase</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><recordid>eNpdkUtLAzEUhYMotlaXbiXgxs1oXvPaKKVYLVQEH-uQycOmzExqMiP47422Smvgkgv343DvOQCcYnRJaYmu7LIJJD5MGCV7YIgZIQlCWb6_1Q_AUQhLhAglaXkIBpQVFFHMhuBm7G3oXO3kwko4llbBWat6qQN80q2o4dRW3gUboGgVfNatDlK3UkPbwgcr9TE4MKIO-mTzj8Dr9PZlcp_MH-9mk_E8kazAXZJluTAEp1polqtSGpPiXJeIlrmpYqWUiqoiVZkZg7BSqpAF0YYIKVlVIEVH4Hqtu-qrRqu4Q-dFzVfeNsJ_cics3520dsHf3AcvMlwwmkeBi42Ad--9Dh1vbDylrkWrXR84yRBDBKWURfT8H7p0vY9m_FDRaYpQEalkTcnoT_Da_C2DEf-Ohu9EE_mz7Qv-6N8s6BdQGYon</recordid><startdate>20211118</startdate><enddate>20211118</enddate><creator>Urate, Shingo</creator><creator>Wakui, Hiromichi</creator><creator>Azushima, Kengo</creator><creator>Yamaji, Takahiro</creator><creator>Suzuki, Toru</creator><creator>Abe, Eriko</creator><creator>Tanaka, Shohei</creator><creator>Taguchi, Shinya</creator><creator>Tsukamoto, Shunichiro</creator><creator>Kinguchi, Sho</creator><creator>Uneda, Kazushi</creator><creator>Kanaoka, Tomohiko</creator><creator>Atobe, Yoshitoshi</creator><creator>Funakoshi, Kengo</creator><creator>Yamashita, Akio</creator><creator>Tamura, Kouichi</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4540-125X</orcidid><orcidid>https://orcid.org/0000-0002-5136-0730</orcidid></search><sort><creationdate>20211118</creationdate><title>Aristolochic Acid Induces Renal Fibrosis and Senescence in Mice</title><author>Urate, Shingo ; Wakui, Hiromichi ; Azushima, Kengo ; Yamaji, Takahiro ; Suzuki, Toru ; Abe, Eriko ; Tanaka, Shohei ; Taguchi, Shinya ; Tsukamoto, Shunichiro ; Kinguchi, Sho ; Uneda, Kazushi ; Kanaoka, Tomohiko ; Atobe, Yoshitoshi ; Funakoshi, Kengo ; Yamashita, Akio ; Tamura, Kouichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-667af215eae47d9cff517e90397fb97f533abb2b96ff01ddd8c82ef2acc4b80d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abnormalities</topic><topic>Age</topic><topic>Aging</topic><topic>Aging - drug effects</topic><topic>Aging - genetics</topic><topic>Animals</topic><topic>Aristolochic acid</topic><topic>Aristolochic Acids - pharmacology</topic><topic>Atrophy</topic><topic>beta-Galactosidase - genetics</topic><topic>beta-Galactosidase - metabolism</topic><topic>Collagen - agonists</topic><topic>Collagen - genetics</topic><topic>Collagen - metabolism</topic><topic>Creatinine</topic><topic>Cyclin-Dependent Kinase Inhibitor p16 - genetics</topic><topic>Cyclin-Dependent Kinase Inhibitor p16 - metabolism</topic><topic>Cyclin-dependent kinases</topic><topic>Disease Models, Animal</topic><topic>Fibrosis</topic><topic>Galactosidase</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Genetic engineering</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Kidney - drug effects</topic><topic>Kidney - metabolism</topic><topic>Kidney - pathology</topic><topic>Kidney diseases</topic><topic>Kidneys</topic><topic>Kinases</topic><topic>Klotho protein</topic><topic>Klotho Proteins - genetics</topic><topic>Klotho Proteins - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microscopy</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Nephritis, Interstitial - chemically induced</topic><topic>Nephritis, Interstitial - genetics</topic><topic>Nephritis, Interstitial - metabolism</topic><topic>Nephritis, Interstitial - pathology</topic><topic>Nephropathy</topic><topic>Organs</topic><topic>Oxidative stress</topic><topic>Phenotypes</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - agonists</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Renal Insufficiency, Chronic - chemically induced</topic><topic>Renal Insufficiency, Chronic - genetics</topic><topic>Renal Insufficiency, Chronic - metabolism</topic><topic>Renal Insufficiency, Chronic - pathology</topic><topic>Senescence</topic><topic>Signal Transduction</topic><topic>Transforming Growth Factor beta - agonists</topic><topic>Transforming Growth Factor beta - genetics</topic><topic>Transforming Growth Factor beta - metabolism</topic><topic>β-Galactosidase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Urate, Shingo</creatorcontrib><creatorcontrib>Wakui, Hiromichi</creatorcontrib><creatorcontrib>Azushima, Kengo</creatorcontrib><creatorcontrib>Yamaji, Takahiro</creatorcontrib><creatorcontrib>Suzuki, Toru</creatorcontrib><creatorcontrib>Abe, Eriko</creatorcontrib><creatorcontrib>Tanaka, Shohei</creatorcontrib><creatorcontrib>Taguchi, Shinya</creatorcontrib><creatorcontrib>Tsukamoto, Shunichiro</creatorcontrib><creatorcontrib>Kinguchi, Sho</creatorcontrib><creatorcontrib>Uneda, Kazushi</creatorcontrib><creatorcontrib>Kanaoka, Tomohiko</creatorcontrib><creatorcontrib>Atobe, Yoshitoshi</creatorcontrib><creatorcontrib>Funakoshi, Kengo</creatorcontrib><creatorcontrib>Yamashita, Akio</creatorcontrib><creatorcontrib>Tamura, Kouichi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Urate, Shingo</au><au>Wakui, Hiromichi</au><au>Azushima, Kengo</au><au>Yamaji, Takahiro</au><au>Suzuki, Toru</au><au>Abe, Eriko</au><au>Tanaka, Shohei</au><au>Taguchi, Shinya</au><au>Tsukamoto, Shunichiro</au><au>Kinguchi, Sho</au><au>Uneda, Kazushi</au><au>Kanaoka, Tomohiko</au><au>Atobe, Yoshitoshi</au><au>Funakoshi, Kengo</au><au>Yamashita, Akio</au><au>Tamura, Kouichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aristolochic Acid Induces Renal Fibrosis and Senescence in Mice</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2021-11-18</date><risdate>2021</risdate><volume>22</volume><issue>22</issue><spage>12432</spage><pages>12432-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>The kidney is one of the most susceptible organs to age-related impairments. Generally, renal aging is accompanied by renal fibrosis, which is the final common pathway of chronic kidney diseases. Aristolochic acid (AA), a nephrotoxic agent, causes AA nephropathy (AAN), which is characterized by progressive renal fibrosis and functional decline. Although renal fibrosis is associated with renal aging, whether AA induces renal aging remains unclear. The aim of the present study is to investigate the potential use of AAN as a model of renal aging. Here, we examined senescence-related factors in AAN models by chronically administering AA to C57BL/6 mice. Compared with controls, the AA group demonstrated aging kidney phenotypes, such as renal atrophy, renal functional decline, and tubulointerstitial fibrosis. Additionally, AA promoted cellular senescence specifically in the kidneys, and increased renal p16 mRNA expression and senescence-associated β-galactosidase activity. Furthermore, AA-treated mice exhibited proximal tubular mitochondrial abnormalities, as well as reactive oxygen species accumulation. Klotho, an antiaging gene, was also significantly decreased in the kidneys of AA-treated mice. Collectively, the results of the present study indicate that AA alters senescence-related factors, and that renal fibrosis is closely related to renal aging.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34830314</pmid><doi>10.3390/ijms222212432</doi><orcidid>https://orcid.org/0000-0002-4540-125X</orcidid><orcidid>https://orcid.org/0000-0002-5136-0730</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2021-11, Vol.22 (22), p.12432
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8618437
source PubMed Central (Open Access); Publicly Available Content Database; Coronavirus Research Database
subjects Abnormalities
Age
Aging
Aging - drug effects
Aging - genetics
Animals
Aristolochic acid
Aristolochic Acids - pharmacology
Atrophy
beta-Galactosidase - genetics
beta-Galactosidase - metabolism
Collagen - agonists
Collagen - genetics
Collagen - metabolism
Creatinine
Cyclin-Dependent Kinase Inhibitor p16 - genetics
Cyclin-Dependent Kinase Inhibitor p16 - metabolism
Cyclin-dependent kinases
Disease Models, Animal
Fibrosis
Galactosidase
Gene expression
Gene Expression Regulation
Genetic engineering
Humans
Hypoxia
Kidney - drug effects
Kidney - metabolism
Kidney - pathology
Kidney diseases
Kidneys
Kinases
Klotho protein
Klotho Proteins - genetics
Klotho Proteins - metabolism
Male
Mice
Mice, Inbred C57BL
Microscopy
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Mitochondria - pathology
Nephritis, Interstitial - chemically induced
Nephritis, Interstitial - genetics
Nephritis, Interstitial - metabolism
Nephritis, Interstitial - pathology
Nephropathy
Organs
Oxidative stress
Phenotypes
Proteins
Reactive oxygen species
Reactive Oxygen Species - agonists
Reactive Oxygen Species - metabolism
Renal Insufficiency, Chronic - chemically induced
Renal Insufficiency, Chronic - genetics
Renal Insufficiency, Chronic - metabolism
Renal Insufficiency, Chronic - pathology
Senescence
Signal Transduction
Transforming Growth Factor beta - agonists
Transforming Growth Factor beta - genetics
Transforming Growth Factor beta - metabolism
β-Galactosidase
title Aristolochic Acid Induces Renal Fibrosis and Senescence in Mice
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A13%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aristolochic%20Acid%20Induces%20Renal%20Fibrosis%20and%20Senescence%20in%20Mice&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Urate,%20Shingo&rft.date=2021-11-18&rft.volume=22&rft.issue=22&rft.spage=12432&rft.pages=12432-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms222212432&rft_dat=%3Cproquest_pubme%3E2604020534%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c481t-667af215eae47d9cff517e90397fb97f533abb2b96ff01ddd8c82ef2acc4b80d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2602123008&rft_id=info:pmid/34830314&rfr_iscdi=true