Loading…
A Preliminary Model of the Wrist Midcarpal Joint
Abstract Background A challenge to deciphering the effect of structure on function in the wrist involves difficulty in obtaining in-vivo information. To provide a platform to study wrist mechanics using in vivo acquired forces, we developed a model of the midcarpal joint based on computed tomograph...
Saved in:
Published in: | Journal of wrist surgery 2021-12, Vol.10 (6), p.523-527 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Background
A challenge to deciphering the effect of structure on function in the wrist involves difficulty in obtaining in-vivo information. To provide a platform to study wrist mechanics using in vivo acquired forces, we developed a model of the midcarpal joint based on computed tomography (CT) scans of normal wrists. Finite element analysis (FEA) can enable application of in vivo collected information to an ex vivo model.
Objectives
The objectives of this study are to (1) create a three-dimensional model of the midcarpal joint of the wrist based on CT scans and (2) generate separate models for the midcarpal joint based on two distinct wrist types and perform a pilot loading of the model.
Methods
CT scans from a normal patient database were converted to three-dimensional standard template library (STL) files using OsiriX software. Five type 1 and five type 2 wrists were used for modeling. A simulated load was applied to the carpometacarpal joints in a distal-to-proximal direction, and FEA was used to predict force transfer in the wrist.
Results
There were 33% type 1 and 67% type 2 wrists. The midcarpal joint dimensional measurements estimated from the model had intermediate agreement between wrist type as measured on CT scan and as predicted by the model: 56% Cohen's kappa (95% confidence interval) = 0.221 (0.05–0.5). Surface stress on the carpometacarpal joints is different in type 1 and type 2 wrists. On loading the neutral wrist, the capitolunate angle was 90 degrees in type 1 wrists and 107 degrees in type 2 wrists (
p
|
---|---|
ISSN: | 2163-3916 2163-3924 |
DOI: | 10.1055/s-0041-1728804 |