Loading…

A Bayesian Generalized Explanatory Item Response Model to Account for Learning During the Test

The present paper introduces a new explanatory item response model to account for the learning that takes place during a psychometric test due to the repeated use of the operations involved in the items. The proposed model is an extension of the operation-specific learning model (Fischer and Formann...

Full description

Saved in:
Bibliographic Details
Published in:Psychometrika 2021-12, Vol.86 (4), p.994-1015
Main Authors: Lozano, José H., Revuelta, Javier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present paper introduces a new explanatory item response model to account for the learning that takes place during a psychometric test due to the repeated use of the operations involved in the items. The proposed model is an extension of the operation-specific learning model (Fischer and Formann in Appl Psychol Meas 6:397–416, 1982; Scheiblechner in Z für Exp Angew Psychol 19:476–506, 1972; Spada in Spada and Kempf (eds.) Structural models of thinking and learning, Huber, Bern, Germany, pp 227–262, 1977). The paper discusses special cases of the model, which, together with the general formulation, differ in the type of response in which the model states that learning occurs: (1) correct and incorrect responses equally (non-contingent learning); (2) correct responses only (contingent learning); and (3) correct and incorrect responses to a different extent (differential contingent learning). A Bayesian framework is adopted for model estimation and evaluation. A simulation study is conducted to examine the performance of the estimation and evaluation methods in recovering the true parameters and selecting the true model. Finally, an empirical study is presented to illustrate the applicability of the model to detect learning effects using real data.
ISSN:0033-3123
1860-0980
DOI:10.1007/s11336-021-09786-x