Loading…

Octree Representation Improves Data Fidelity of Cardiac CT Images and Convolutional Neural Network Semantic Segmentation of Left Atrial and Ventricular Chambers

To assess whether octree representation and octree-based convolutional neural networks (CNNs) improve segmentation accuracy of three-dimensional images. Cardiac CT angiographic examinations from 100 patients (mean age, 67 years ± 17 [standard deviation]; 60 men) performed between June 2012 and June...

Full description

Saved in:
Bibliographic Details
Published in:Radiology. Artificial intelligence 2021-11, Vol.3 (6), p.e210036
Main Authors: Gupta, Kunal, Sekhar, Nitesh, Vigneault, Davis M, Scott, Anderson R, Colvert, Brendan, Craine, Amanda, Raghavan, Adhithi, Contijoch, Francisco J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-ff528b64498f9895c3083db162fc44bb7f8fa55a44d848827dedac1193c482563
cites cdi_FETCH-LOGICAL-c393t-ff528b64498f9895c3083db162fc44bb7f8fa55a44d848827dedac1193c482563
container_end_page
container_issue 6
container_start_page e210036
container_title Radiology. Artificial intelligence
container_volume 3
creator Gupta, Kunal
Sekhar, Nitesh
Vigneault, Davis M
Scott, Anderson R
Colvert, Brendan
Craine, Amanda
Raghavan, Adhithi
Contijoch, Francisco J
description To assess whether octree representation and octree-based convolutional neural networks (CNNs) improve segmentation accuracy of three-dimensional images. Cardiac CT angiographic examinations from 100 patients (mean age, 67 years ± 17 [standard deviation]; 60 men) performed between June 2012 and June 2018 with semantic segmentations of the left ventricular (LV) and left atrial (LA) blood pools at the end-diastolic and end-systolic cardiac phases were retrospectively evaluated. Image quality (root mean square error [RMSE]) and segmentation fidelity (global Dice and border Dice coefficients) metrics of the octree representation were compared with spatial downsampling for a range of memory footprints. Fivefold cross-validation was used to train an octree-based CNN and CNNs with spatial downsampling at four levels of image compression or spatial downsampling. The semantic segmentation performance of octree-based CNN (OctNet) was compared with the performance of U-Nets with spatial downsampling. Octrees provided high image and segmentation fidelity (median RMSE, 1.34 HU; LV Dice coefficient, 0.970; LV border Dice coefficient, 0.843) with a reduced memory footprint (87.5% reduction). Spatial downsampling to the same memory footprint had lower data fidelity (median RMSE, 12.96 HU; LV Dice coefficient, 0.852; LV border Dice coefficient, 0.310). OctNet segmentation improved the border segmentation Dice coefficient (LV, 0.612; LA, 0.636) compared with the highest performance among U-Nets with spatial downsampling (Dice coefficients: LV, 0.579; LA, 0.592). Octree-based representations can reduce the memory footprint and improve segmentation border accuracy. CT, Cardiac, Segmentation, Supervised Learning, Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning Algorithms© RSNA, 2021.
doi_str_mv 10.1148/ryai.2021210036
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8637236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2607300537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-ff528b64498f9895c3083db162fc44bb7f8fa55a44d848827dedac1193c482563</originalsourceid><addsrcrecordid>eNpVkU9v1DAQxSMEolXpmRvykcu2_pfEuSBVgdJKKypB4WpNnPHWkMSL7Szab8NHrUPLUk4zo_nNeyO9onjN6BljUp2HPbgzTjnjjFJRPSuOeSXUqsrT8yf9UXEa43dKMyhlyenL4khIVVPO2XHx-8akgEg-4zZgxClBcn4i1-M2-B1G8h4SkEvX4-DSnnhLWgi9A0Pa2wzBJiMw9aT1084P83ILA_mEc_hT0i8ffpAvOMKUnMnNZjxYZK012kQuUnAZXlS-5WVwZh4gkPYOxg5DfFW8sDBEPH2sJ8XXyw-37dVqffPxur1Yr4xoRFpZW3LVVVI2yjaqKY2gSvQdq7g1UnZdbZWFsgQpeyWV4nWPPRjGGmGk4mUlTop3D7rbuRuxN8srMOhtcCOEvfbg9P-byd3pjd9pVYmai0Xg7aNA8D9njEmPLhocBpjQz1HzitaC0lLUGT1_QE3wMQa0BxtG9RKtXqLV_6LNF2-efnfg_wYp7gFLxaMQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607300537</pqid></control><display><type>article</type><title>Octree Representation Improves Data Fidelity of Cardiac CT Images and Convolutional Neural Network Semantic Segmentation of Left Atrial and Ventricular Chambers</title><source>PubMed Central</source><creator>Gupta, Kunal ; Sekhar, Nitesh ; Vigneault, Davis M ; Scott, Anderson R ; Colvert, Brendan ; Craine, Amanda ; Raghavan, Adhithi ; Contijoch, Francisco J</creator><creatorcontrib>Gupta, Kunal ; Sekhar, Nitesh ; Vigneault, Davis M ; Scott, Anderson R ; Colvert, Brendan ; Craine, Amanda ; Raghavan, Adhithi ; Contijoch, Francisco J</creatorcontrib><description>To assess whether octree representation and octree-based convolutional neural networks (CNNs) improve segmentation accuracy of three-dimensional images. Cardiac CT angiographic examinations from 100 patients (mean age, 67 years ± 17 [standard deviation]; 60 men) performed between June 2012 and June 2018 with semantic segmentations of the left ventricular (LV) and left atrial (LA) blood pools at the end-diastolic and end-systolic cardiac phases were retrospectively evaluated. Image quality (root mean square error [RMSE]) and segmentation fidelity (global Dice and border Dice coefficients) metrics of the octree representation were compared with spatial downsampling for a range of memory footprints. Fivefold cross-validation was used to train an octree-based CNN and CNNs with spatial downsampling at four levels of image compression or spatial downsampling. The semantic segmentation performance of octree-based CNN (OctNet) was compared with the performance of U-Nets with spatial downsampling. Octrees provided high image and segmentation fidelity (median RMSE, 1.34 HU; LV Dice coefficient, 0.970; LV border Dice coefficient, 0.843) with a reduced memory footprint (87.5% reduction). Spatial downsampling to the same memory footprint had lower data fidelity (median RMSE, 12.96 HU; LV Dice coefficient, 0.852; LV border Dice coefficient, 0.310). OctNet segmentation improved the border segmentation Dice coefficient (LV, 0.612; LA, 0.636) compared with the highest performance among U-Nets with spatial downsampling (Dice coefficients: LV, 0.579; LA, 0.592). Octree-based representations can reduce the memory footprint and improve segmentation border accuracy. CT, Cardiac, Segmentation, Supervised Learning, Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning Algorithms© RSNA, 2021.</description><identifier>ISSN: 2638-6100</identifier><identifier>EISSN: 2638-6100</identifier><identifier>DOI: 10.1148/ryai.2021210036</identifier><identifier>PMID: 34870221</identifier><language>eng</language><publisher>United States: Radiological Society of North America</publisher><subject>Technical Development</subject><ispartof>Radiology. Artificial intelligence, 2021-11, Vol.3 (6), p.e210036</ispartof><rights>2021 by the Radiological Society of North America, Inc.</rights><rights>2021 by the Radiological Society of North America, Inc. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-ff528b64498f9895c3083db162fc44bb7f8fa55a44d848827dedac1193c482563</citedby><cites>FETCH-LOGICAL-c393t-ff528b64498f9895c3083db162fc44bb7f8fa55a44d848827dedac1193c482563</cites><orcidid>0000-0002-0102-7470 ; 0000-0002-0595-8061 ; 0000-0002-4812-8228 ; 0000-0003-3798-9812 ; 0000-0001-9616-3274 ; 0000-0001-8628-2202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8637236/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8637236/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34870221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, Kunal</creatorcontrib><creatorcontrib>Sekhar, Nitesh</creatorcontrib><creatorcontrib>Vigneault, Davis M</creatorcontrib><creatorcontrib>Scott, Anderson R</creatorcontrib><creatorcontrib>Colvert, Brendan</creatorcontrib><creatorcontrib>Craine, Amanda</creatorcontrib><creatorcontrib>Raghavan, Adhithi</creatorcontrib><creatorcontrib>Contijoch, Francisco J</creatorcontrib><title>Octree Representation Improves Data Fidelity of Cardiac CT Images and Convolutional Neural Network Semantic Segmentation of Left Atrial and Ventricular Chambers</title><title>Radiology. Artificial intelligence</title><addtitle>Radiol Artif Intell</addtitle><description>To assess whether octree representation and octree-based convolutional neural networks (CNNs) improve segmentation accuracy of three-dimensional images. Cardiac CT angiographic examinations from 100 patients (mean age, 67 years ± 17 [standard deviation]; 60 men) performed between June 2012 and June 2018 with semantic segmentations of the left ventricular (LV) and left atrial (LA) blood pools at the end-diastolic and end-systolic cardiac phases were retrospectively evaluated. Image quality (root mean square error [RMSE]) and segmentation fidelity (global Dice and border Dice coefficients) metrics of the octree representation were compared with spatial downsampling for a range of memory footprints. Fivefold cross-validation was used to train an octree-based CNN and CNNs with spatial downsampling at four levels of image compression or spatial downsampling. The semantic segmentation performance of octree-based CNN (OctNet) was compared with the performance of U-Nets with spatial downsampling. Octrees provided high image and segmentation fidelity (median RMSE, 1.34 HU; LV Dice coefficient, 0.970; LV border Dice coefficient, 0.843) with a reduced memory footprint (87.5% reduction). Spatial downsampling to the same memory footprint had lower data fidelity (median RMSE, 12.96 HU; LV Dice coefficient, 0.852; LV border Dice coefficient, 0.310). OctNet segmentation improved the border segmentation Dice coefficient (LV, 0.612; LA, 0.636) compared with the highest performance among U-Nets with spatial downsampling (Dice coefficients: LV, 0.579; LA, 0.592). Octree-based representations can reduce the memory footprint and improve segmentation border accuracy. CT, Cardiac, Segmentation, Supervised Learning, Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning Algorithms© RSNA, 2021.</description><subject>Technical Development</subject><issn>2638-6100</issn><issn>2638-6100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkU9v1DAQxSMEolXpmRvykcu2_pfEuSBVgdJKKypB4WpNnPHWkMSL7Szab8NHrUPLUk4zo_nNeyO9onjN6BljUp2HPbgzTjnjjFJRPSuOeSXUqsrT8yf9UXEa43dKMyhlyenL4khIVVPO2XHx-8akgEg-4zZgxClBcn4i1-M2-B1G8h4SkEvX4-DSnnhLWgi9A0Pa2wzBJiMw9aT1084P83ILA_mEc_hT0i8ffpAvOMKUnMnNZjxYZK012kQuUnAZXlS-5WVwZh4gkPYOxg5DfFW8sDBEPH2sJ8XXyw-37dVqffPxur1Yr4xoRFpZW3LVVVI2yjaqKY2gSvQdq7g1UnZdbZWFsgQpeyWV4nWPPRjGGmGk4mUlTop3D7rbuRuxN8srMOhtcCOEvfbg9P-byd3pjd9pVYmai0Xg7aNA8D9njEmPLhocBpjQz1HzitaC0lLUGT1_QE3wMQa0BxtG9RKtXqLV_6LNF2-efnfg_wYp7gFLxaMQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Gupta, Kunal</creator><creator>Sekhar, Nitesh</creator><creator>Vigneault, Davis M</creator><creator>Scott, Anderson R</creator><creator>Colvert, Brendan</creator><creator>Craine, Amanda</creator><creator>Raghavan, Adhithi</creator><creator>Contijoch, Francisco J</creator><general>Radiological Society of North America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0102-7470</orcidid><orcidid>https://orcid.org/0000-0002-0595-8061</orcidid><orcidid>https://orcid.org/0000-0002-4812-8228</orcidid><orcidid>https://orcid.org/0000-0003-3798-9812</orcidid><orcidid>https://orcid.org/0000-0001-9616-3274</orcidid><orcidid>https://orcid.org/0000-0001-8628-2202</orcidid></search><sort><creationdate>20211101</creationdate><title>Octree Representation Improves Data Fidelity of Cardiac CT Images and Convolutional Neural Network Semantic Segmentation of Left Atrial and Ventricular Chambers</title><author>Gupta, Kunal ; Sekhar, Nitesh ; Vigneault, Davis M ; Scott, Anderson R ; Colvert, Brendan ; Craine, Amanda ; Raghavan, Adhithi ; Contijoch, Francisco J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-ff528b64498f9895c3083db162fc44bb7f8fa55a44d848827dedac1193c482563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Technical Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Kunal</creatorcontrib><creatorcontrib>Sekhar, Nitesh</creatorcontrib><creatorcontrib>Vigneault, Davis M</creatorcontrib><creatorcontrib>Scott, Anderson R</creatorcontrib><creatorcontrib>Colvert, Brendan</creatorcontrib><creatorcontrib>Craine, Amanda</creatorcontrib><creatorcontrib>Raghavan, Adhithi</creatorcontrib><creatorcontrib>Contijoch, Francisco J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Radiology. Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Kunal</au><au>Sekhar, Nitesh</au><au>Vigneault, Davis M</au><au>Scott, Anderson R</au><au>Colvert, Brendan</au><au>Craine, Amanda</au><au>Raghavan, Adhithi</au><au>Contijoch, Francisco J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Octree Representation Improves Data Fidelity of Cardiac CT Images and Convolutional Neural Network Semantic Segmentation of Left Atrial and Ventricular Chambers</atitle><jtitle>Radiology. Artificial intelligence</jtitle><addtitle>Radiol Artif Intell</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>3</volume><issue>6</issue><spage>e210036</spage><pages>e210036-</pages><issn>2638-6100</issn><eissn>2638-6100</eissn><abstract>To assess whether octree representation and octree-based convolutional neural networks (CNNs) improve segmentation accuracy of three-dimensional images. Cardiac CT angiographic examinations from 100 patients (mean age, 67 years ± 17 [standard deviation]; 60 men) performed between June 2012 and June 2018 with semantic segmentations of the left ventricular (LV) and left atrial (LA) blood pools at the end-diastolic and end-systolic cardiac phases were retrospectively evaluated. Image quality (root mean square error [RMSE]) and segmentation fidelity (global Dice and border Dice coefficients) metrics of the octree representation were compared with spatial downsampling for a range of memory footprints. Fivefold cross-validation was used to train an octree-based CNN and CNNs with spatial downsampling at four levels of image compression or spatial downsampling. The semantic segmentation performance of octree-based CNN (OctNet) was compared with the performance of U-Nets with spatial downsampling. Octrees provided high image and segmentation fidelity (median RMSE, 1.34 HU; LV Dice coefficient, 0.970; LV border Dice coefficient, 0.843) with a reduced memory footprint (87.5% reduction). Spatial downsampling to the same memory footprint had lower data fidelity (median RMSE, 12.96 HU; LV Dice coefficient, 0.852; LV border Dice coefficient, 0.310). OctNet segmentation improved the border segmentation Dice coefficient (LV, 0.612; LA, 0.636) compared with the highest performance among U-Nets with spatial downsampling (Dice coefficients: LV, 0.579; LA, 0.592). Octree-based representations can reduce the memory footprint and improve segmentation border accuracy. CT, Cardiac, Segmentation, Supervised Learning, Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning Algorithms© RSNA, 2021.</abstract><cop>United States</cop><pub>Radiological Society of North America</pub><pmid>34870221</pmid><doi>10.1148/ryai.2021210036</doi><orcidid>https://orcid.org/0000-0002-0102-7470</orcidid><orcidid>https://orcid.org/0000-0002-0595-8061</orcidid><orcidid>https://orcid.org/0000-0002-4812-8228</orcidid><orcidid>https://orcid.org/0000-0003-3798-9812</orcidid><orcidid>https://orcid.org/0000-0001-9616-3274</orcidid><orcidid>https://orcid.org/0000-0001-8628-2202</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2638-6100
ispartof Radiology. Artificial intelligence, 2021-11, Vol.3 (6), p.e210036
issn 2638-6100
2638-6100
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8637236
source PubMed Central
subjects Technical Development
title Octree Representation Improves Data Fidelity of Cardiac CT Images and Convolutional Neural Network Semantic Segmentation of Left Atrial and Ventricular Chambers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A01%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Octree%20Representation%20Improves%20Data%20Fidelity%20of%20Cardiac%20CT%20Images%20and%20Convolutional%20Neural%20Network%20Semantic%20Segmentation%20of%20Left%20Atrial%20and%20Ventricular%20Chambers&rft.jtitle=Radiology.%20Artificial%20intelligence&rft.au=Gupta,%20Kunal&rft.date=2021-11-01&rft.volume=3&rft.issue=6&rft.spage=e210036&rft.pages=e210036-&rft.issn=2638-6100&rft.eissn=2638-6100&rft_id=info:doi/10.1148/ryai.2021210036&rft_dat=%3Cproquest_pubme%3E2607300537%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-ff528b64498f9895c3083db162fc44bb7f8fa55a44d848827dedac1193c482563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2607300537&rft_id=info:pmid/34870221&rfr_iscdi=true