Loading…
Octree Representation Improves Data Fidelity of Cardiac CT Images and Convolutional Neural Network Semantic Segmentation of Left Atrial and Ventricular Chambers
To assess whether octree representation and octree-based convolutional neural networks (CNNs) improve segmentation accuracy of three-dimensional images. Cardiac CT angiographic examinations from 100 patients (mean age, 67 years ± 17 [standard deviation]; 60 men) performed between June 2012 and June...
Saved in:
Published in: | Radiology. Artificial intelligence 2021-11, Vol.3 (6), p.e210036 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c393t-ff528b64498f9895c3083db162fc44bb7f8fa55a44d848827dedac1193c482563 |
---|---|
cites | cdi_FETCH-LOGICAL-c393t-ff528b64498f9895c3083db162fc44bb7f8fa55a44d848827dedac1193c482563 |
container_end_page | |
container_issue | 6 |
container_start_page | e210036 |
container_title | Radiology. Artificial intelligence |
container_volume | 3 |
creator | Gupta, Kunal Sekhar, Nitesh Vigneault, Davis M Scott, Anderson R Colvert, Brendan Craine, Amanda Raghavan, Adhithi Contijoch, Francisco J |
description | To assess whether octree representation and octree-based convolutional neural networks (CNNs) improve segmentation accuracy of three-dimensional images.
Cardiac CT angiographic examinations from 100 patients (mean age, 67 years ± 17 [standard deviation]; 60 men) performed between June 2012 and June 2018 with semantic segmentations of the left ventricular (LV) and left atrial (LA) blood pools at the end-diastolic and end-systolic cardiac phases were retrospectively evaluated. Image quality (root mean square error [RMSE]) and segmentation fidelity (global Dice and border Dice coefficients) metrics of the octree representation were compared with spatial downsampling for a range of memory footprints. Fivefold cross-validation was used to train an octree-based CNN and CNNs with spatial downsampling at four levels of image compression or spatial downsampling. The semantic segmentation performance of octree-based CNN (OctNet) was compared with the performance of U-Nets with spatial downsampling.
Octrees provided high image and segmentation fidelity (median RMSE, 1.34 HU; LV Dice coefficient, 0.970; LV border Dice coefficient, 0.843) with a reduced memory footprint (87.5% reduction). Spatial downsampling to the same memory footprint had lower data fidelity (median RMSE, 12.96 HU; LV Dice coefficient, 0.852; LV border Dice coefficient, 0.310). OctNet segmentation improved the border segmentation Dice coefficient (LV, 0.612; LA, 0.636) compared with the highest performance among U-Nets with spatial downsampling (Dice coefficients: LV, 0.579; LA, 0.592).
Octree-based representations can reduce the memory footprint and improve segmentation border accuracy.
CT, Cardiac, Segmentation, Supervised Learning, Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning Algorithms© RSNA, 2021. |
doi_str_mv | 10.1148/ryai.2021210036 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8637236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2607300537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-ff528b64498f9895c3083db162fc44bb7f8fa55a44d848827dedac1193c482563</originalsourceid><addsrcrecordid>eNpVkU9v1DAQxSMEolXpmRvykcu2_pfEuSBVgdJKKypB4WpNnPHWkMSL7Szab8NHrUPLUk4zo_nNeyO9onjN6BljUp2HPbgzTjnjjFJRPSuOeSXUqsrT8yf9UXEa43dKMyhlyenL4khIVVPO2XHx-8akgEg-4zZgxClBcn4i1-M2-B1G8h4SkEvX4-DSnnhLWgi9A0Pa2wzBJiMw9aT1084P83ILA_mEc_hT0i8ffpAvOMKUnMnNZjxYZK012kQuUnAZXlS-5WVwZh4gkPYOxg5DfFW8sDBEPH2sJ8XXyw-37dVqffPxur1Yr4xoRFpZW3LVVVI2yjaqKY2gSvQdq7g1UnZdbZWFsgQpeyWV4nWPPRjGGmGk4mUlTop3D7rbuRuxN8srMOhtcCOEvfbg9P-byd3pjd9pVYmai0Xg7aNA8D9njEmPLhocBpjQz1HzitaC0lLUGT1_QE3wMQa0BxtG9RKtXqLV_6LNF2-efnfg_wYp7gFLxaMQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607300537</pqid></control><display><type>article</type><title>Octree Representation Improves Data Fidelity of Cardiac CT Images and Convolutional Neural Network Semantic Segmentation of Left Atrial and Ventricular Chambers</title><source>PubMed Central</source><creator>Gupta, Kunal ; Sekhar, Nitesh ; Vigneault, Davis M ; Scott, Anderson R ; Colvert, Brendan ; Craine, Amanda ; Raghavan, Adhithi ; Contijoch, Francisco J</creator><creatorcontrib>Gupta, Kunal ; Sekhar, Nitesh ; Vigneault, Davis M ; Scott, Anderson R ; Colvert, Brendan ; Craine, Amanda ; Raghavan, Adhithi ; Contijoch, Francisco J</creatorcontrib><description>To assess whether octree representation and octree-based convolutional neural networks (CNNs) improve segmentation accuracy of three-dimensional images.
Cardiac CT angiographic examinations from 100 patients (mean age, 67 years ± 17 [standard deviation]; 60 men) performed between June 2012 and June 2018 with semantic segmentations of the left ventricular (LV) and left atrial (LA) blood pools at the end-diastolic and end-systolic cardiac phases were retrospectively evaluated. Image quality (root mean square error [RMSE]) and segmentation fidelity (global Dice and border Dice coefficients) metrics of the octree representation were compared with spatial downsampling for a range of memory footprints. Fivefold cross-validation was used to train an octree-based CNN and CNNs with spatial downsampling at four levels of image compression or spatial downsampling. The semantic segmentation performance of octree-based CNN (OctNet) was compared with the performance of U-Nets with spatial downsampling.
Octrees provided high image and segmentation fidelity (median RMSE, 1.34 HU; LV Dice coefficient, 0.970; LV border Dice coefficient, 0.843) with a reduced memory footprint (87.5% reduction). Spatial downsampling to the same memory footprint had lower data fidelity (median RMSE, 12.96 HU; LV Dice coefficient, 0.852; LV border Dice coefficient, 0.310). OctNet segmentation improved the border segmentation Dice coefficient (LV, 0.612; LA, 0.636) compared with the highest performance among U-Nets with spatial downsampling (Dice coefficients: LV, 0.579; LA, 0.592).
Octree-based representations can reduce the memory footprint and improve segmentation border accuracy.
CT, Cardiac, Segmentation, Supervised Learning, Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning Algorithms© RSNA, 2021.</description><identifier>ISSN: 2638-6100</identifier><identifier>EISSN: 2638-6100</identifier><identifier>DOI: 10.1148/ryai.2021210036</identifier><identifier>PMID: 34870221</identifier><language>eng</language><publisher>United States: Radiological Society of North America</publisher><subject>Technical Development</subject><ispartof>Radiology. Artificial intelligence, 2021-11, Vol.3 (6), p.e210036</ispartof><rights>2021 by the Radiological Society of North America, Inc.</rights><rights>2021 by the Radiological Society of North America, Inc. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-ff528b64498f9895c3083db162fc44bb7f8fa55a44d848827dedac1193c482563</citedby><cites>FETCH-LOGICAL-c393t-ff528b64498f9895c3083db162fc44bb7f8fa55a44d848827dedac1193c482563</cites><orcidid>0000-0002-0102-7470 ; 0000-0002-0595-8061 ; 0000-0002-4812-8228 ; 0000-0003-3798-9812 ; 0000-0001-9616-3274 ; 0000-0001-8628-2202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8637236/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8637236/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34870221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, Kunal</creatorcontrib><creatorcontrib>Sekhar, Nitesh</creatorcontrib><creatorcontrib>Vigneault, Davis M</creatorcontrib><creatorcontrib>Scott, Anderson R</creatorcontrib><creatorcontrib>Colvert, Brendan</creatorcontrib><creatorcontrib>Craine, Amanda</creatorcontrib><creatorcontrib>Raghavan, Adhithi</creatorcontrib><creatorcontrib>Contijoch, Francisco J</creatorcontrib><title>Octree Representation Improves Data Fidelity of Cardiac CT Images and Convolutional Neural Network Semantic Segmentation of Left Atrial and Ventricular Chambers</title><title>Radiology. Artificial intelligence</title><addtitle>Radiol Artif Intell</addtitle><description>To assess whether octree representation and octree-based convolutional neural networks (CNNs) improve segmentation accuracy of three-dimensional images.
Cardiac CT angiographic examinations from 100 patients (mean age, 67 years ± 17 [standard deviation]; 60 men) performed between June 2012 and June 2018 with semantic segmentations of the left ventricular (LV) and left atrial (LA) blood pools at the end-diastolic and end-systolic cardiac phases were retrospectively evaluated. Image quality (root mean square error [RMSE]) and segmentation fidelity (global Dice and border Dice coefficients) metrics of the octree representation were compared with spatial downsampling for a range of memory footprints. Fivefold cross-validation was used to train an octree-based CNN and CNNs with spatial downsampling at four levels of image compression or spatial downsampling. The semantic segmentation performance of octree-based CNN (OctNet) was compared with the performance of U-Nets with spatial downsampling.
Octrees provided high image and segmentation fidelity (median RMSE, 1.34 HU; LV Dice coefficient, 0.970; LV border Dice coefficient, 0.843) with a reduced memory footprint (87.5% reduction). Spatial downsampling to the same memory footprint had lower data fidelity (median RMSE, 12.96 HU; LV Dice coefficient, 0.852; LV border Dice coefficient, 0.310). OctNet segmentation improved the border segmentation Dice coefficient (LV, 0.612; LA, 0.636) compared with the highest performance among U-Nets with spatial downsampling (Dice coefficients: LV, 0.579; LA, 0.592).
Octree-based representations can reduce the memory footprint and improve segmentation border accuracy.
CT, Cardiac, Segmentation, Supervised Learning, Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning Algorithms© RSNA, 2021.</description><subject>Technical Development</subject><issn>2638-6100</issn><issn>2638-6100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkU9v1DAQxSMEolXpmRvykcu2_pfEuSBVgdJKKypB4WpNnPHWkMSL7Szab8NHrUPLUk4zo_nNeyO9onjN6BljUp2HPbgzTjnjjFJRPSuOeSXUqsrT8yf9UXEa43dKMyhlyenL4khIVVPO2XHx-8akgEg-4zZgxClBcn4i1-M2-B1G8h4SkEvX4-DSnnhLWgi9A0Pa2wzBJiMw9aT1084P83ILA_mEc_hT0i8ffpAvOMKUnMnNZjxYZK012kQuUnAZXlS-5WVwZh4gkPYOxg5DfFW8sDBEPH2sJ8XXyw-37dVqffPxur1Yr4xoRFpZW3LVVVI2yjaqKY2gSvQdq7g1UnZdbZWFsgQpeyWV4nWPPRjGGmGk4mUlTop3D7rbuRuxN8srMOhtcCOEvfbg9P-byd3pjd9pVYmai0Xg7aNA8D9njEmPLhocBpjQz1HzitaC0lLUGT1_QE3wMQa0BxtG9RKtXqLV_6LNF2-efnfg_wYp7gFLxaMQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Gupta, Kunal</creator><creator>Sekhar, Nitesh</creator><creator>Vigneault, Davis M</creator><creator>Scott, Anderson R</creator><creator>Colvert, Brendan</creator><creator>Craine, Amanda</creator><creator>Raghavan, Adhithi</creator><creator>Contijoch, Francisco J</creator><general>Radiological Society of North America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0102-7470</orcidid><orcidid>https://orcid.org/0000-0002-0595-8061</orcidid><orcidid>https://orcid.org/0000-0002-4812-8228</orcidid><orcidid>https://orcid.org/0000-0003-3798-9812</orcidid><orcidid>https://orcid.org/0000-0001-9616-3274</orcidid><orcidid>https://orcid.org/0000-0001-8628-2202</orcidid></search><sort><creationdate>20211101</creationdate><title>Octree Representation Improves Data Fidelity of Cardiac CT Images and Convolutional Neural Network Semantic Segmentation of Left Atrial and Ventricular Chambers</title><author>Gupta, Kunal ; Sekhar, Nitesh ; Vigneault, Davis M ; Scott, Anderson R ; Colvert, Brendan ; Craine, Amanda ; Raghavan, Adhithi ; Contijoch, Francisco J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-ff528b64498f9895c3083db162fc44bb7f8fa55a44d848827dedac1193c482563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Technical Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Kunal</creatorcontrib><creatorcontrib>Sekhar, Nitesh</creatorcontrib><creatorcontrib>Vigneault, Davis M</creatorcontrib><creatorcontrib>Scott, Anderson R</creatorcontrib><creatorcontrib>Colvert, Brendan</creatorcontrib><creatorcontrib>Craine, Amanda</creatorcontrib><creatorcontrib>Raghavan, Adhithi</creatorcontrib><creatorcontrib>Contijoch, Francisco J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Radiology. Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Kunal</au><au>Sekhar, Nitesh</au><au>Vigneault, Davis M</au><au>Scott, Anderson R</au><au>Colvert, Brendan</au><au>Craine, Amanda</au><au>Raghavan, Adhithi</au><au>Contijoch, Francisco J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Octree Representation Improves Data Fidelity of Cardiac CT Images and Convolutional Neural Network Semantic Segmentation of Left Atrial and Ventricular Chambers</atitle><jtitle>Radiology. Artificial intelligence</jtitle><addtitle>Radiol Artif Intell</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>3</volume><issue>6</issue><spage>e210036</spage><pages>e210036-</pages><issn>2638-6100</issn><eissn>2638-6100</eissn><abstract>To assess whether octree representation and octree-based convolutional neural networks (CNNs) improve segmentation accuracy of three-dimensional images.
Cardiac CT angiographic examinations from 100 patients (mean age, 67 years ± 17 [standard deviation]; 60 men) performed between June 2012 and June 2018 with semantic segmentations of the left ventricular (LV) and left atrial (LA) blood pools at the end-diastolic and end-systolic cardiac phases were retrospectively evaluated. Image quality (root mean square error [RMSE]) and segmentation fidelity (global Dice and border Dice coefficients) metrics of the octree representation were compared with spatial downsampling for a range of memory footprints. Fivefold cross-validation was used to train an octree-based CNN and CNNs with spatial downsampling at four levels of image compression or spatial downsampling. The semantic segmentation performance of octree-based CNN (OctNet) was compared with the performance of U-Nets with spatial downsampling.
Octrees provided high image and segmentation fidelity (median RMSE, 1.34 HU; LV Dice coefficient, 0.970; LV border Dice coefficient, 0.843) with a reduced memory footprint (87.5% reduction). Spatial downsampling to the same memory footprint had lower data fidelity (median RMSE, 12.96 HU; LV Dice coefficient, 0.852; LV border Dice coefficient, 0.310). OctNet segmentation improved the border segmentation Dice coefficient (LV, 0.612; LA, 0.636) compared with the highest performance among U-Nets with spatial downsampling (Dice coefficients: LV, 0.579; LA, 0.592).
Octree-based representations can reduce the memory footprint and improve segmentation border accuracy.
CT, Cardiac, Segmentation, Supervised Learning, Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning Algorithms© RSNA, 2021.</abstract><cop>United States</cop><pub>Radiological Society of North America</pub><pmid>34870221</pmid><doi>10.1148/ryai.2021210036</doi><orcidid>https://orcid.org/0000-0002-0102-7470</orcidid><orcidid>https://orcid.org/0000-0002-0595-8061</orcidid><orcidid>https://orcid.org/0000-0002-4812-8228</orcidid><orcidid>https://orcid.org/0000-0003-3798-9812</orcidid><orcidid>https://orcid.org/0000-0001-9616-3274</orcidid><orcidid>https://orcid.org/0000-0001-8628-2202</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2638-6100 |
ispartof | Radiology. Artificial intelligence, 2021-11, Vol.3 (6), p.e210036 |
issn | 2638-6100 2638-6100 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8637236 |
source | PubMed Central |
subjects | Technical Development |
title | Octree Representation Improves Data Fidelity of Cardiac CT Images and Convolutional Neural Network Semantic Segmentation of Left Atrial and Ventricular Chambers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A01%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Octree%20Representation%20Improves%20Data%20Fidelity%20of%20Cardiac%20CT%20Images%20and%20Convolutional%20Neural%20Network%20Semantic%20Segmentation%20of%20Left%20Atrial%20and%20Ventricular%20Chambers&rft.jtitle=Radiology.%20Artificial%20intelligence&rft.au=Gupta,%20Kunal&rft.date=2021-11-01&rft.volume=3&rft.issue=6&rft.spage=e210036&rft.pages=e210036-&rft.issn=2638-6100&rft.eissn=2638-6100&rft_id=info:doi/10.1148/ryai.2021210036&rft_dat=%3Cproquest_pubme%3E2607300537%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-ff528b64498f9895c3083db162fc44bb7f8fa55a44d848827dedac1193c482563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2607300537&rft_id=info:pmid/34870221&rfr_iscdi=true |