Loading…

MET inhibition enhances PARP inhibitor efficacy in castration‐resistant prostate cancer by suppressing the ATM/ATR and PI3K/AKT pathways

Up to 30% of patients with metastatic castration‐resistant prostate cancer (CRPC) patients carry altered DNA damage response genes, enabling the use of poly adenosine diphosphate–ribose polymerase (PARP) inhibitors in advanced CRPC. The proto‐oncogene mesenchymal–epithelial transition (MET) is cruci...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cellular and molecular medicine 2021-12, Vol.25 (24), p.11157-11169
Main Authors: Zhou, Sihai, Dai, Zhihong, Wang, Liang, Gao, Xiang, Yang, Liqin, Wang, Zhenwei, Wang, Qi, Liu, Zhiyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4487-11589b41bf1eeff54b68c601177704923c35b15f5db7fc0a299b8cd798f30da93
cites cdi_FETCH-LOGICAL-c4487-11589b41bf1eeff54b68c601177704923c35b15f5db7fc0a299b8cd798f30da93
container_end_page 11169
container_issue 24
container_start_page 11157
container_title Journal of cellular and molecular medicine
container_volume 25
creator Zhou, Sihai
Dai, Zhihong
Wang, Liang
Gao, Xiang
Yang, Liqin
Wang, Zhenwei
Wang, Qi
Liu, Zhiyu
description Up to 30% of patients with metastatic castration‐resistant prostate cancer (CRPC) patients carry altered DNA damage response genes, enabling the use of poly adenosine diphosphate–ribose polymerase (PARP) inhibitors in advanced CRPC. The proto‐oncogene mesenchymal–epithelial transition (MET) is crucial in the migration, proliferation, and invasion of tumour cells. Aberrant expression of MET and its ligand hepatocyte growth factor is associated with drug resistance in cancer therapy. Here, we found that MET was highly expressed in human CRPC tissues and overexpressed in DU145 and PC3 cells in a drug concentration‐dependent manner and is closely related to sensitivity to PARP inhibitors. Combining the PARP inhibitor olaparib with the MET inhibitor crizotinib synergistically inhibited CRPC cell growth both in vivo and in vitro. Further analysis of the underlying molecular mechanism underlying the MET suppression‐induced drug sensitivity revealed that olaparib and crizotinib could together downregulate the ATM/ATR signaling pathway, inducing apoptosis by inhibiting the phosphoinositide 3‐kinase/protein kinase B (PI3K/AKT) pathway, enhancing the olaparib‐induced antitumour effect in DU145 and PC3 cells. In conclusion, we demonstrated that MET inhibition enhances sensitivity of CRPC to PARP inhibitors by suppressing the ATM/ATR and PI3K/AKT pathways and provides a novel, targeted therapy regimen for CRPC.
doi_str_mv 10.1111/jcmm.17037
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8650038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596456082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4487-11589b41bf1eeff54b68c601177704923c35b15f5db7fc0a299b8cd798f30da93</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEoj-w4QGQJTYIaTp27MT2BikaFSjtiFEV1pbtOI1HiZPaCVV2XbPiGXkSPMy0AhZ446t7Px2de0-SvELwDMW33OquO0MUYvokOUYZSxeEY_L0UCOG2VFyEsIWQpwjzJ8nR5jQHBFOj5Pv6_MSWNdYZUfbO2BcI502AWyK683DoPfA1LXVUs-xBbQMo5c7_Of9D2-CDaN0Ixh8H4vRxHlU8EDNIEzDEIFg3Q0YGwOKcr0symsgXQU2F_hyWVyWYJBjcyfn8CJ5Vss2mJeH_zT5-uG8XH1aXH35eLEqrhaaEEYXKG7FFUGqRia6yojKmc4hQpRSSHiKNc4UyuqsUrTWUKacK6YrylmNYSU5Pk3e73WHSXWm0sbFbVoxeNtJP4teWvH3xNlG3PTfBMuzeEIWBd4eBHx_O5kwis4GbdpWOtNPQaQZz0mWQ5ZG9M0_6LafvIvriTSHNE0pgjRS7_aUjicM3tSPZhAUu4jFLmLxO-IIv_7T_iP6kGkE0B64s62Z_yMlPq_W673oL7L0s4M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607227107</pqid></control><display><type>article</type><title>MET inhibition enhances PARP inhibitor efficacy in castration‐resistant prostate cancer by suppressing the ATM/ATR and PI3K/AKT pathways</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Zhou, Sihai ; Dai, Zhihong ; Wang, Liang ; Gao, Xiang ; Yang, Liqin ; Wang, Zhenwei ; Wang, Qi ; Liu, Zhiyu</creator><creatorcontrib>Zhou, Sihai ; Dai, Zhihong ; Wang, Liang ; Gao, Xiang ; Yang, Liqin ; Wang, Zhenwei ; Wang, Qi ; Liu, Zhiyu</creatorcontrib><description>Up to 30% of patients with metastatic castration‐resistant prostate cancer (CRPC) patients carry altered DNA damage response genes, enabling the use of poly adenosine diphosphate–ribose polymerase (PARP) inhibitors in advanced CRPC. The proto‐oncogene mesenchymal–epithelial transition (MET) is crucial in the migration, proliferation, and invasion of tumour cells. Aberrant expression of MET and its ligand hepatocyte growth factor is associated with drug resistance in cancer therapy. Here, we found that MET was highly expressed in human CRPC tissues and overexpressed in DU145 and PC3 cells in a drug concentration‐dependent manner and is closely related to sensitivity to PARP inhibitors. Combining the PARP inhibitor olaparib with the MET inhibitor crizotinib synergistically inhibited CRPC cell growth both in vivo and in vitro. Further analysis of the underlying molecular mechanism underlying the MET suppression‐induced drug sensitivity revealed that olaparib and crizotinib could together downregulate the ATM/ATR signaling pathway, inducing apoptosis by inhibiting the phosphoinositide 3‐kinase/protein kinase B (PI3K/AKT) pathway, enhancing the olaparib‐induced antitumour effect in DU145 and PC3 cells. In conclusion, we demonstrated that MET inhibition enhances sensitivity of CRPC to PARP inhibitors by suppressing the ATM/ATR and PI3K/AKT pathways and provides a novel, targeted therapy regimen for CRPC.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.17037</identifier><identifier>PMID: 34761497</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>1-Phosphatidylinositol 3-kinase ; Adenosine ; AKT protein ; Androgens ; Animals ; Antibodies ; Apoptosis ; Apoptosis - drug effects ; Ataxia Telangiectasia Mutated Proteins - metabolism ; ATM/ATR pathway ; c-Met protein ; Cancer therapies ; Castration ; Cell cycle ; Cell Line, Tumor ; Cell proliferation ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; CRPC ; Disease Models, Animal ; DNA damage ; DNA damage response ; Drug resistance ; Drug Synergism ; Gene Silencing ; Genes ; Hepatocyte growth factor ; Humans ; Kinases ; Male ; Medical research ; Membranes ; Mesenchyme ; MET inhibitor ; Metastases ; Mice ; Mutation ; Original ; PARP inhibitor ; Phosphatidylinositol 3-Kinases - metabolism ; PI3K/AKT pathway ; Poly(ADP-ribose) polymerase ; Poly(ADP-ribose) Polymerase Inhibitors - pharmacology ; Prostate cancer ; Prostatic Neoplasms, Castration-Resistant - drug therapy ; Prostatic Neoplasms, Castration-Resistant - etiology ; Prostatic Neoplasms, Castration-Resistant - metabolism ; Prostatic Neoplasms, Castration-Resistant - pathology ; Protein Kinase Inhibitors - pharmacology ; Proteins ; Proto-Oncogene Proteins c-akt - metabolism ; Proto-Oncogene Proteins c-met - antagonists &amp; inhibitors ; Ribose ; Signal transduction ; Signal Transduction - drug effects ; Targeted cancer therapy ; Tumors ; Xenograft Model Antitumor Assays</subject><ispartof>Journal of cellular and molecular medicine, 2021-12, Vol.25 (24), p.11157-11169</ispartof><rights>2021 The Authors. published by Foundation for Cellular and Molecular Medicine and John Wiley &amp; Sons Ltd.</rights><rights>2021 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley &amp; Sons Ltd.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4487-11589b41bf1eeff54b68c601177704923c35b15f5db7fc0a299b8cd798f30da93</citedby><cites>FETCH-LOGICAL-c4487-11589b41bf1eeff54b68c601177704923c35b15f5db7fc0a299b8cd798f30da93</cites><orcidid>0000-0002-6024-7836 ; 0000-0003-2427-7234</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2607227107/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2607227107?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34761497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Sihai</creatorcontrib><creatorcontrib>Dai, Zhihong</creatorcontrib><creatorcontrib>Wang, Liang</creatorcontrib><creatorcontrib>Gao, Xiang</creatorcontrib><creatorcontrib>Yang, Liqin</creatorcontrib><creatorcontrib>Wang, Zhenwei</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Liu, Zhiyu</creatorcontrib><title>MET inhibition enhances PARP inhibitor efficacy in castration‐resistant prostate cancer by suppressing the ATM/ATR and PI3K/AKT pathways</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Up to 30% of patients with metastatic castration‐resistant prostate cancer (CRPC) patients carry altered DNA damage response genes, enabling the use of poly adenosine diphosphate–ribose polymerase (PARP) inhibitors in advanced CRPC. The proto‐oncogene mesenchymal–epithelial transition (MET) is crucial in the migration, proliferation, and invasion of tumour cells. Aberrant expression of MET and its ligand hepatocyte growth factor is associated with drug resistance in cancer therapy. Here, we found that MET was highly expressed in human CRPC tissues and overexpressed in DU145 and PC3 cells in a drug concentration‐dependent manner and is closely related to sensitivity to PARP inhibitors. Combining the PARP inhibitor olaparib with the MET inhibitor crizotinib synergistically inhibited CRPC cell growth both in vivo and in vitro. Further analysis of the underlying molecular mechanism underlying the MET suppression‐induced drug sensitivity revealed that olaparib and crizotinib could together downregulate the ATM/ATR signaling pathway, inducing apoptosis by inhibiting the phosphoinositide 3‐kinase/protein kinase B (PI3K/AKT) pathway, enhancing the olaparib‐induced antitumour effect in DU145 and PC3 cells. In conclusion, we demonstrated that MET inhibition enhances sensitivity of CRPC to PARP inhibitors by suppressing the ATM/ATR and PI3K/AKT pathways and provides a novel, targeted therapy regimen for CRPC.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>Adenosine</subject><subject>AKT protein</subject><subject>Androgens</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Ataxia Telangiectasia Mutated Proteins - metabolism</subject><subject>ATM/ATR pathway</subject><subject>c-Met protein</subject><subject>Cancer therapies</subject><subject>Castration</subject><subject>Cell cycle</subject><subject>Cell Line, Tumor</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>CRPC</subject><subject>Disease Models, Animal</subject><subject>DNA damage</subject><subject>DNA damage response</subject><subject>Drug resistance</subject><subject>Drug Synergism</subject><subject>Gene Silencing</subject><subject>Genes</subject><subject>Hepatocyte growth factor</subject><subject>Humans</subject><subject>Kinases</subject><subject>Male</subject><subject>Medical research</subject><subject>Membranes</subject><subject>Mesenchyme</subject><subject>MET inhibitor</subject><subject>Metastases</subject><subject>Mice</subject><subject>Mutation</subject><subject>Original</subject><subject>PARP inhibitor</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>PI3K/AKT pathway</subject><subject>Poly(ADP-ribose) polymerase</subject><subject>Poly(ADP-ribose) Polymerase Inhibitors - pharmacology</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms, Castration-Resistant - drug therapy</subject><subject>Prostatic Neoplasms, Castration-Resistant - etiology</subject><subject>Prostatic Neoplasms, Castration-Resistant - metabolism</subject><subject>Prostatic Neoplasms, Castration-Resistant - pathology</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Proto-Oncogene Proteins c-met - antagonists &amp; inhibitors</subject><subject>Ribose</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Targeted cancer therapy</subject><subject>Tumors</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNp9kc1u1DAUhSMEoj-w4QGQJTYIaTp27MT2BikaFSjtiFEV1pbtOI1HiZPaCVV2XbPiGXkSPMy0AhZ446t7Px2de0-SvELwDMW33OquO0MUYvokOUYZSxeEY_L0UCOG2VFyEsIWQpwjzJ8nR5jQHBFOj5Pv6_MSWNdYZUfbO2BcI502AWyK683DoPfA1LXVUs-xBbQMo5c7_Of9D2-CDaN0Ixh8H4vRxHlU8EDNIEzDEIFg3Q0YGwOKcr0symsgXQU2F_hyWVyWYJBjcyfn8CJ5Vss2mJeH_zT5-uG8XH1aXH35eLEqrhaaEEYXKG7FFUGqRia6yojKmc4hQpRSSHiKNc4UyuqsUrTWUKacK6YrylmNYSU5Pk3e73WHSXWm0sbFbVoxeNtJP4teWvH3xNlG3PTfBMuzeEIWBd4eBHx_O5kwis4GbdpWOtNPQaQZz0mWQ5ZG9M0_6LafvIvriTSHNE0pgjRS7_aUjicM3tSPZhAUu4jFLmLxO-IIv_7T_iP6kGkE0B64s62Z_yMlPq_W673oL7L0s4M</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Zhou, Sihai</creator><creator>Dai, Zhihong</creator><creator>Wang, Liang</creator><creator>Gao, Xiang</creator><creator>Yang, Liqin</creator><creator>Wang, Zhenwei</creator><creator>Wang, Qi</creator><creator>Liu, Zhiyu</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6024-7836</orcidid><orcidid>https://orcid.org/0000-0003-2427-7234</orcidid></search><sort><creationdate>202112</creationdate><title>MET inhibition enhances PARP inhibitor efficacy in castration‐resistant prostate cancer by suppressing the ATM/ATR and PI3K/AKT pathways</title><author>Zhou, Sihai ; Dai, Zhihong ; Wang, Liang ; Gao, Xiang ; Yang, Liqin ; Wang, Zhenwei ; Wang, Qi ; Liu, Zhiyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4487-11589b41bf1eeff54b68c601177704923c35b15f5db7fc0a299b8cd798f30da93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>Adenosine</topic><topic>AKT protein</topic><topic>Androgens</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Ataxia Telangiectasia Mutated Proteins - metabolism</topic><topic>ATM/ATR pathway</topic><topic>c-Met protein</topic><topic>Cancer therapies</topic><topic>Castration</topic><topic>Cell cycle</topic><topic>Cell Line, Tumor</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>CRPC</topic><topic>Disease Models, Animal</topic><topic>DNA damage</topic><topic>DNA damage response</topic><topic>Drug resistance</topic><topic>Drug Synergism</topic><topic>Gene Silencing</topic><topic>Genes</topic><topic>Hepatocyte growth factor</topic><topic>Humans</topic><topic>Kinases</topic><topic>Male</topic><topic>Medical research</topic><topic>Membranes</topic><topic>Mesenchyme</topic><topic>MET inhibitor</topic><topic>Metastases</topic><topic>Mice</topic><topic>Mutation</topic><topic>Original</topic><topic>PARP inhibitor</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>PI3K/AKT pathway</topic><topic>Poly(ADP-ribose) polymerase</topic><topic>Poly(ADP-ribose) Polymerase Inhibitors - pharmacology</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms, Castration-Resistant - drug therapy</topic><topic>Prostatic Neoplasms, Castration-Resistant - etiology</topic><topic>Prostatic Neoplasms, Castration-Resistant - metabolism</topic><topic>Prostatic Neoplasms, Castration-Resistant - pathology</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Proto-Oncogene Proteins c-met - antagonists &amp; inhibitors</topic><topic>Ribose</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Targeted cancer therapy</topic><topic>Tumors</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Sihai</creatorcontrib><creatorcontrib>Dai, Zhihong</creatorcontrib><creatorcontrib>Wang, Liang</creatorcontrib><creatorcontrib>Gao, Xiang</creatorcontrib><creatorcontrib>Yang, Liqin</creatorcontrib><creatorcontrib>Wang, Zhenwei</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Liu, Zhiyu</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley-Blackwell Open Access Backfiles (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Sihai</au><au>Dai, Zhihong</au><au>Wang, Liang</au><au>Gao, Xiang</au><au>Yang, Liqin</au><au>Wang, Zhenwei</au><au>Wang, Qi</au><au>Liu, Zhiyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MET inhibition enhances PARP inhibitor efficacy in castration‐resistant prostate cancer by suppressing the ATM/ATR and PI3K/AKT pathways</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2021-12</date><risdate>2021</risdate><volume>25</volume><issue>24</issue><spage>11157</spage><epage>11169</epage><pages>11157-11169</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Up to 30% of patients with metastatic castration‐resistant prostate cancer (CRPC) patients carry altered DNA damage response genes, enabling the use of poly adenosine diphosphate–ribose polymerase (PARP) inhibitors in advanced CRPC. The proto‐oncogene mesenchymal–epithelial transition (MET) is crucial in the migration, proliferation, and invasion of tumour cells. Aberrant expression of MET and its ligand hepatocyte growth factor is associated with drug resistance in cancer therapy. Here, we found that MET was highly expressed in human CRPC tissues and overexpressed in DU145 and PC3 cells in a drug concentration‐dependent manner and is closely related to sensitivity to PARP inhibitors. Combining the PARP inhibitor olaparib with the MET inhibitor crizotinib synergistically inhibited CRPC cell growth both in vivo and in vitro. Further analysis of the underlying molecular mechanism underlying the MET suppression‐induced drug sensitivity revealed that olaparib and crizotinib could together downregulate the ATM/ATR signaling pathway, inducing apoptosis by inhibiting the phosphoinositide 3‐kinase/protein kinase B (PI3K/AKT) pathway, enhancing the olaparib‐induced antitumour effect in DU145 and PC3 cells. In conclusion, we demonstrated that MET inhibition enhances sensitivity of CRPC to PARP inhibitors by suppressing the ATM/ATR and PI3K/AKT pathways and provides a novel, targeted therapy regimen for CRPC.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>34761497</pmid><doi>10.1111/jcmm.17037</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6024-7836</orcidid><orcidid>https://orcid.org/0000-0003-2427-7234</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1582-1838
ispartof Journal of cellular and molecular medicine, 2021-12, Vol.25 (24), p.11157-11169
issn 1582-1838
1582-4934
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8650038
source PubMed Central Free; Publicly Available Content Database; Wiley Open Access
subjects 1-Phosphatidylinositol 3-kinase
Adenosine
AKT protein
Androgens
Animals
Antibodies
Apoptosis
Apoptosis - drug effects
Ataxia Telangiectasia Mutated Proteins - metabolism
ATM/ATR pathway
c-Met protein
Cancer therapies
Castration
Cell cycle
Cell Line, Tumor
Cell proliferation
Cell Proliferation - drug effects
Cell Survival - drug effects
CRPC
Disease Models, Animal
DNA damage
DNA damage response
Drug resistance
Drug Synergism
Gene Silencing
Genes
Hepatocyte growth factor
Humans
Kinases
Male
Medical research
Membranes
Mesenchyme
MET inhibitor
Metastases
Mice
Mutation
Original
PARP inhibitor
Phosphatidylinositol 3-Kinases - metabolism
PI3K/AKT pathway
Poly(ADP-ribose) polymerase
Poly(ADP-ribose) Polymerase Inhibitors - pharmacology
Prostate cancer
Prostatic Neoplasms, Castration-Resistant - drug therapy
Prostatic Neoplasms, Castration-Resistant - etiology
Prostatic Neoplasms, Castration-Resistant - metabolism
Prostatic Neoplasms, Castration-Resistant - pathology
Protein Kinase Inhibitors - pharmacology
Proteins
Proto-Oncogene Proteins c-akt - metabolism
Proto-Oncogene Proteins c-met - antagonists & inhibitors
Ribose
Signal transduction
Signal Transduction - drug effects
Targeted cancer therapy
Tumors
Xenograft Model Antitumor Assays
title MET inhibition enhances PARP inhibitor efficacy in castration‐resistant prostate cancer by suppressing the ATM/ATR and PI3K/AKT pathways
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A02%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MET%20inhibition%20enhances%20PARP%20inhibitor%20efficacy%20in%20castration%E2%80%90resistant%20prostate%20cancer%20by%20suppressing%20the%20ATM/ATR%20and%20PI3K/AKT%20pathways&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Zhou,%20Sihai&rft.date=2021-12&rft.volume=25&rft.issue=24&rft.spage=11157&rft.epage=11169&rft.pages=11157-11169&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.17037&rft_dat=%3Cproquest_pubme%3E2596456082%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4487-11589b41bf1eeff54b68c601177704923c35b15f5db7fc0a299b8cd798f30da93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2607227107&rft_id=info:pmid/34761497&rfr_iscdi=true