Loading…

Deep Learning Predicts the Malignant-Transformation-Free Survival of Oral Potentially Malignant Disorders

Machine-intelligence platforms for the prediction of the probability of malignant transformation of oral potentially malignant disorders are required as adjunctive decision-making platforms in contemporary clinical practice. This study utilized time-to-event learning models to predict malignant tran...

Full description

Saved in:
Bibliographic Details
Published in:Cancers 2021-12, Vol.13 (23), p.6054
Main Authors: Adeoye, John, Koohi-Moghadam, Mohamad, Lo, Anthony Wing Ip, Tsang, Raymond King-Yin, Chow, Velda Ling Yu, Zheng, Li-Wu, Choi, Siu-Wai, Thomson, Peter, Su, Yu-Xiong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c398t-514c106a30915fcce7913a294d7a42d5a4c5fb7ee755d6207e6ac5ec981ed1493
cites cdi_FETCH-LOGICAL-c398t-514c106a30915fcce7913a294d7a42d5a4c5fb7ee755d6207e6ac5ec981ed1493
container_end_page
container_issue 23
container_start_page 6054
container_title Cancers
container_volume 13
creator Adeoye, John
Koohi-Moghadam, Mohamad
Lo, Anthony Wing Ip
Tsang, Raymond King-Yin
Chow, Velda Ling Yu
Zheng, Li-Wu
Choi, Siu-Wai
Thomson, Peter
Su, Yu-Xiong
description Machine-intelligence platforms for the prediction of the probability of malignant transformation of oral potentially malignant disorders are required as adjunctive decision-making platforms in contemporary clinical practice. This study utilized time-to-event learning models to predict malignant transformation in oral leukoplakia and oral lichenoid lesions. A total of 1098 patients with oral white lesions from two institutions were included in this study. In all, 26 features available from electronic health records were used to train four learning algorithms—Cox-Time, DeepHit, DeepSurv, random survival forest (RSF)—and one standard statistical method—Cox proportional hazards model. Discriminatory performance, calibration of survival estimates, and model stability were assessed using a concordance index (c-index), integrated Brier score (IBS), and standard deviation of the averaged c-index and IBS following training cross-validation. This study found that DeepSurv (c-index: 0.95, IBS: 0.04) and RSF (c-index: 0.91, IBS: 0.03) were the two outperforming models based on discrimination and calibration following internal validation. However, DeepSurv was more stable than RSF upon cross-validation. External validation confirmed the utility of DeepSurv for discrimination (c-index—0.82 vs. 0.73) and RSF for individual survival estimates (0.18 vs. 0.03). We deployed the DeepSurv model to encourage incipient application in clinical practice. Overall, time-to-event models are successful in predicting the malignant transformation of oral leukoplakia and oral lichenoid lesions.
doi_str_mv 10.3390/cancers13236054
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8657223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608080167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-514c106a30915fcce7913a294d7a42d5a4c5fb7ee755d6207e6ac5ec981ed1493</originalsourceid><addsrcrecordid>eNpdkctLHEEQxpsQiaKevQ7k4mViv3v6EhCNUVhRiDk3ZU_N2jLbvemeWfC_T_vAV9WhCupXH19RhBww-kMIS488RI-5MMGFpkp-ITucGt5qbeXXd_022S_lntYQghltvpFtIbtOMS13SDhFXDcLhBxDXDbXGfvgp9JMd9hcwhiWEeLU3mSIZUh5BVNIsT3LiM2fOW_CBsYmDc1VrvU6TRinAOP48LbanIaScl9t7pGtAcaC-y91l_w9-3Vzct4urn5fnBwvWi9sN7WKSc-oBkEtU4P3aCwTwK3sDUjeK5BeDbcG0SjV63okavAKve0Y9kxasUt-Puuu59sV9r56qu7cOocV5AeXILiPkxju3DJtXKeV4VxUgcMXgZz-zVgmtwrF4zhCxDQXxzXtlBDK8op-_4TepznHet4TVZNpU6mjZ8rnVErG4dUMo-7xk-7TJ8V_YquSvg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608080167</pqid></control><display><type>article</type><title>Deep Learning Predicts the Malignant-Transformation-Free Survival of Oral Potentially Malignant Disorders</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Adeoye, John ; Koohi-Moghadam, Mohamad ; Lo, Anthony Wing Ip ; Tsang, Raymond King-Yin ; Chow, Velda Ling Yu ; Zheng, Li-Wu ; Choi, Siu-Wai ; Thomson, Peter ; Su, Yu-Xiong</creator><creatorcontrib>Adeoye, John ; Koohi-Moghadam, Mohamad ; Lo, Anthony Wing Ip ; Tsang, Raymond King-Yin ; Chow, Velda Ling Yu ; Zheng, Li-Wu ; Choi, Siu-Wai ; Thomson, Peter ; Su, Yu-Xiong</creatorcontrib><description>Machine-intelligence platforms for the prediction of the probability of malignant transformation of oral potentially malignant disorders are required as adjunctive decision-making platforms in contemporary clinical practice. This study utilized time-to-event learning models to predict malignant transformation in oral leukoplakia and oral lichenoid lesions. A total of 1098 patients with oral white lesions from two institutions were included in this study. In all, 26 features available from electronic health records were used to train four learning algorithms—Cox-Time, DeepHit, DeepSurv, random survival forest (RSF)—and one standard statistical method—Cox proportional hazards model. Discriminatory performance, calibration of survival estimates, and model stability were assessed using a concordance index (c-index), integrated Brier score (IBS), and standard deviation of the averaged c-index and IBS following training cross-validation. This study found that DeepSurv (c-index: 0.95, IBS: 0.04) and RSF (c-index: 0.91, IBS: 0.03) were the two outperforming models based on discrimination and calibration following internal validation. However, DeepSurv was more stable than RSF upon cross-validation. External validation confirmed the utility of DeepSurv for discrimination (c-index—0.82 vs. 0.73) and RSF for individual survival estimates (0.18 vs. 0.03). We deployed the DeepSurv model to encourage incipient application in clinical practice. Overall, time-to-event models are successful in predicting the malignant transformation of oral leukoplakia and oral lichenoid lesions.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers13236054</identifier><identifier>PMID: 34885164</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alcohol ; Algorithms ; Artificial intelligence ; Biopsy ; Calibration ; Clinical outcomes ; Datasets ; Decision making ; Deep learning ; Diagnosis ; Disease ; Electronic medical records ; Head &amp; neck cancer ; Hospitals ; Intelligence ; Irritable bowel syndrome ; Learning algorithms ; Lesions ; Leukokeratosis ; Machine learning ; Malignancy ; Maxillofacial surgery ; Medical prognosis ; Mouth ; Oral carcinoma ; Otolaryngology ; Probability ; Survival ; Tumors ; Variables</subject><ispartof>Cancers, 2021-12, Vol.13 (23), p.6054</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-514c106a30915fcce7913a294d7a42d5a4c5fb7ee755d6207e6ac5ec981ed1493</citedby><cites>FETCH-LOGICAL-c398t-514c106a30915fcce7913a294d7a42d5a4c5fb7ee755d6207e6ac5ec981ed1493</cites><orcidid>0000-0003-3493-1463 ; 0000-0002-9388-310X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2608080167/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2608080167?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25744,27915,27916,37003,37004,44581,53782,53784,74887</link.rule.ids></links><search><creatorcontrib>Adeoye, John</creatorcontrib><creatorcontrib>Koohi-Moghadam, Mohamad</creatorcontrib><creatorcontrib>Lo, Anthony Wing Ip</creatorcontrib><creatorcontrib>Tsang, Raymond King-Yin</creatorcontrib><creatorcontrib>Chow, Velda Ling Yu</creatorcontrib><creatorcontrib>Zheng, Li-Wu</creatorcontrib><creatorcontrib>Choi, Siu-Wai</creatorcontrib><creatorcontrib>Thomson, Peter</creatorcontrib><creatorcontrib>Su, Yu-Xiong</creatorcontrib><title>Deep Learning Predicts the Malignant-Transformation-Free Survival of Oral Potentially Malignant Disorders</title><title>Cancers</title><description>Machine-intelligence platforms for the prediction of the probability of malignant transformation of oral potentially malignant disorders are required as adjunctive decision-making platforms in contemporary clinical practice. This study utilized time-to-event learning models to predict malignant transformation in oral leukoplakia and oral lichenoid lesions. A total of 1098 patients with oral white lesions from two institutions were included in this study. In all, 26 features available from electronic health records were used to train four learning algorithms—Cox-Time, DeepHit, DeepSurv, random survival forest (RSF)—and one standard statistical method—Cox proportional hazards model. Discriminatory performance, calibration of survival estimates, and model stability were assessed using a concordance index (c-index), integrated Brier score (IBS), and standard deviation of the averaged c-index and IBS following training cross-validation. This study found that DeepSurv (c-index: 0.95, IBS: 0.04) and RSF (c-index: 0.91, IBS: 0.03) were the two outperforming models based on discrimination and calibration following internal validation. However, DeepSurv was more stable than RSF upon cross-validation. External validation confirmed the utility of DeepSurv for discrimination (c-index—0.82 vs. 0.73) and RSF for individual survival estimates (0.18 vs. 0.03). We deployed the DeepSurv model to encourage incipient application in clinical practice. Overall, time-to-event models are successful in predicting the malignant transformation of oral leukoplakia and oral lichenoid lesions.</description><subject>Alcohol</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Biopsy</subject><subject>Calibration</subject><subject>Clinical outcomes</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Disease</subject><subject>Electronic medical records</subject><subject>Head &amp; neck cancer</subject><subject>Hospitals</subject><subject>Intelligence</subject><subject>Irritable bowel syndrome</subject><subject>Learning algorithms</subject><subject>Lesions</subject><subject>Leukokeratosis</subject><subject>Machine learning</subject><subject>Malignancy</subject><subject>Maxillofacial surgery</subject><subject>Medical prognosis</subject><subject>Mouth</subject><subject>Oral carcinoma</subject><subject>Otolaryngology</subject><subject>Probability</subject><subject>Survival</subject><subject>Tumors</subject><subject>Variables</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkctLHEEQxpsQiaKevQ7k4mViv3v6EhCNUVhRiDk3ZU_N2jLbvemeWfC_T_vAV9WhCupXH19RhBww-kMIS488RI-5MMGFpkp-ITucGt5qbeXXd_022S_lntYQghltvpFtIbtOMS13SDhFXDcLhBxDXDbXGfvgp9JMd9hcwhiWEeLU3mSIZUh5BVNIsT3LiM2fOW_CBsYmDc1VrvU6TRinAOP48LbanIaScl9t7pGtAcaC-y91l_w9-3Vzct4urn5fnBwvWi9sN7WKSc-oBkEtU4P3aCwTwK3sDUjeK5BeDbcG0SjV63okavAKve0Y9kxasUt-Puuu59sV9r56qu7cOocV5AeXILiPkxju3DJtXKeV4VxUgcMXgZz-zVgmtwrF4zhCxDQXxzXtlBDK8op-_4TepznHet4TVZNpU6mjZ8rnVErG4dUMo-7xk-7TJ8V_YquSvg</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Adeoye, John</creator><creator>Koohi-Moghadam, Mohamad</creator><creator>Lo, Anthony Wing Ip</creator><creator>Tsang, Raymond King-Yin</creator><creator>Chow, Velda Ling Yu</creator><creator>Zheng, Li-Wu</creator><creator>Choi, Siu-Wai</creator><creator>Thomson, Peter</creator><creator>Su, Yu-Xiong</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3493-1463</orcidid><orcidid>https://orcid.org/0000-0002-9388-310X</orcidid></search><sort><creationdate>20211201</creationdate><title>Deep Learning Predicts the Malignant-Transformation-Free Survival of Oral Potentially Malignant Disorders</title><author>Adeoye, John ; Koohi-Moghadam, Mohamad ; Lo, Anthony Wing Ip ; Tsang, Raymond King-Yin ; Chow, Velda Ling Yu ; Zheng, Li-Wu ; Choi, Siu-Wai ; Thomson, Peter ; Su, Yu-Xiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-514c106a30915fcce7913a294d7a42d5a4c5fb7ee755d6207e6ac5ec981ed1493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alcohol</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Biopsy</topic><topic>Calibration</topic><topic>Clinical outcomes</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Disease</topic><topic>Electronic medical records</topic><topic>Head &amp; neck cancer</topic><topic>Hospitals</topic><topic>Intelligence</topic><topic>Irritable bowel syndrome</topic><topic>Learning algorithms</topic><topic>Lesions</topic><topic>Leukokeratosis</topic><topic>Machine learning</topic><topic>Malignancy</topic><topic>Maxillofacial surgery</topic><topic>Medical prognosis</topic><topic>Mouth</topic><topic>Oral carcinoma</topic><topic>Otolaryngology</topic><topic>Probability</topic><topic>Survival</topic><topic>Tumors</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adeoye, John</creatorcontrib><creatorcontrib>Koohi-Moghadam, Mohamad</creatorcontrib><creatorcontrib>Lo, Anthony Wing Ip</creatorcontrib><creatorcontrib>Tsang, Raymond King-Yin</creatorcontrib><creatorcontrib>Chow, Velda Ling Yu</creatorcontrib><creatorcontrib>Zheng, Li-Wu</creatorcontrib><creatorcontrib>Choi, Siu-Wai</creatorcontrib><creatorcontrib>Thomson, Peter</creatorcontrib><creatorcontrib>Su, Yu-Xiong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adeoye, John</au><au>Koohi-Moghadam, Mohamad</au><au>Lo, Anthony Wing Ip</au><au>Tsang, Raymond King-Yin</au><au>Chow, Velda Ling Yu</au><au>Zheng, Li-Wu</au><au>Choi, Siu-Wai</au><au>Thomson, Peter</au><au>Su, Yu-Xiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning Predicts the Malignant-Transformation-Free Survival of Oral Potentially Malignant Disorders</atitle><jtitle>Cancers</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>13</volume><issue>23</issue><spage>6054</spage><pages>6054-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Machine-intelligence platforms for the prediction of the probability of malignant transformation of oral potentially malignant disorders are required as adjunctive decision-making platforms in contemporary clinical practice. This study utilized time-to-event learning models to predict malignant transformation in oral leukoplakia and oral lichenoid lesions. A total of 1098 patients with oral white lesions from two institutions were included in this study. In all, 26 features available from electronic health records were used to train four learning algorithms—Cox-Time, DeepHit, DeepSurv, random survival forest (RSF)—and one standard statistical method—Cox proportional hazards model. Discriminatory performance, calibration of survival estimates, and model stability were assessed using a concordance index (c-index), integrated Brier score (IBS), and standard deviation of the averaged c-index and IBS following training cross-validation. This study found that DeepSurv (c-index: 0.95, IBS: 0.04) and RSF (c-index: 0.91, IBS: 0.03) were the two outperforming models based on discrimination and calibration following internal validation. However, DeepSurv was more stable than RSF upon cross-validation. External validation confirmed the utility of DeepSurv for discrimination (c-index—0.82 vs. 0.73) and RSF for individual survival estimates (0.18 vs. 0.03). We deployed the DeepSurv model to encourage incipient application in clinical practice. Overall, time-to-event models are successful in predicting the malignant transformation of oral leukoplakia and oral lichenoid lesions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34885164</pmid><doi>10.3390/cancers13236054</doi><orcidid>https://orcid.org/0000-0003-3493-1463</orcidid><orcidid>https://orcid.org/0000-0002-9388-310X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2021-12, Vol.13 (23), p.6054
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8657223
source Publicly Available Content Database; PubMed Central
subjects Alcohol
Algorithms
Artificial intelligence
Biopsy
Calibration
Clinical outcomes
Datasets
Decision making
Deep learning
Diagnosis
Disease
Electronic medical records
Head & neck cancer
Hospitals
Intelligence
Irritable bowel syndrome
Learning algorithms
Lesions
Leukokeratosis
Machine learning
Malignancy
Maxillofacial surgery
Medical prognosis
Mouth
Oral carcinoma
Otolaryngology
Probability
Survival
Tumors
Variables
title Deep Learning Predicts the Malignant-Transformation-Free Survival of Oral Potentially Malignant Disorders
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A39%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20Predicts%20the%20Malignant-Transformation-Free%20Survival%20of%20Oral%20Potentially%20Malignant%20Disorders&rft.jtitle=Cancers&rft.au=Adeoye,%20John&rft.date=2021-12-01&rft.volume=13&rft.issue=23&rft.spage=6054&rft.pages=6054-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers13236054&rft_dat=%3Cproquest_pubme%3E2608080167%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-514c106a30915fcce7913a294d7a42d5a4c5fb7ee755d6207e6ac5ec981ed1493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2608080167&rft_id=info:pmid/34885164&rfr_iscdi=true