Loading…
Deep Learning Predicts the Malignant-Transformation-Free Survival of Oral Potentially Malignant Disorders
Machine-intelligence platforms for the prediction of the probability of malignant transformation of oral potentially malignant disorders are required as adjunctive decision-making platforms in contemporary clinical practice. This study utilized time-to-event learning models to predict malignant tran...
Saved in:
Published in: | Cancers 2021-12, Vol.13 (23), p.6054 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c398t-514c106a30915fcce7913a294d7a42d5a4c5fb7ee755d6207e6ac5ec981ed1493 |
---|---|
cites | cdi_FETCH-LOGICAL-c398t-514c106a30915fcce7913a294d7a42d5a4c5fb7ee755d6207e6ac5ec981ed1493 |
container_end_page | |
container_issue | 23 |
container_start_page | 6054 |
container_title | Cancers |
container_volume | 13 |
creator | Adeoye, John Koohi-Moghadam, Mohamad Lo, Anthony Wing Ip Tsang, Raymond King-Yin Chow, Velda Ling Yu Zheng, Li-Wu Choi, Siu-Wai Thomson, Peter Su, Yu-Xiong |
description | Machine-intelligence platforms for the prediction of the probability of malignant transformation of oral potentially malignant disorders are required as adjunctive decision-making platforms in contemporary clinical practice. This study utilized time-to-event learning models to predict malignant transformation in oral leukoplakia and oral lichenoid lesions. A total of 1098 patients with oral white lesions from two institutions were included in this study. In all, 26 features available from electronic health records were used to train four learning algorithms—Cox-Time, DeepHit, DeepSurv, random survival forest (RSF)—and one standard statistical method—Cox proportional hazards model. Discriminatory performance, calibration of survival estimates, and model stability were assessed using a concordance index (c-index), integrated Brier score (IBS), and standard deviation of the averaged c-index and IBS following training cross-validation. This study found that DeepSurv (c-index: 0.95, IBS: 0.04) and RSF (c-index: 0.91, IBS: 0.03) were the two outperforming models based on discrimination and calibration following internal validation. However, DeepSurv was more stable than RSF upon cross-validation. External validation confirmed the utility of DeepSurv for discrimination (c-index—0.82 vs. 0.73) and RSF for individual survival estimates (0.18 vs. 0.03). We deployed the DeepSurv model to encourage incipient application in clinical practice. Overall, time-to-event models are successful in predicting the malignant transformation of oral leukoplakia and oral lichenoid lesions. |
doi_str_mv | 10.3390/cancers13236054 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8657223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608080167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-514c106a30915fcce7913a294d7a42d5a4c5fb7ee755d6207e6ac5ec981ed1493</originalsourceid><addsrcrecordid>eNpdkctLHEEQxpsQiaKevQ7k4mViv3v6EhCNUVhRiDk3ZU_N2jLbvemeWfC_T_vAV9WhCupXH19RhBww-kMIS488RI-5MMGFpkp-ITucGt5qbeXXd_022S_lntYQghltvpFtIbtOMS13SDhFXDcLhBxDXDbXGfvgp9JMd9hcwhiWEeLU3mSIZUh5BVNIsT3LiM2fOW_CBsYmDc1VrvU6TRinAOP48LbanIaScl9t7pGtAcaC-y91l_w9-3Vzct4urn5fnBwvWi9sN7WKSc-oBkEtU4P3aCwTwK3sDUjeK5BeDbcG0SjV63okavAKve0Y9kxasUt-Puuu59sV9r56qu7cOocV5AeXILiPkxju3DJtXKeV4VxUgcMXgZz-zVgmtwrF4zhCxDQXxzXtlBDK8op-_4TepznHet4TVZNpU6mjZ8rnVErG4dUMo-7xk-7TJ8V_YquSvg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608080167</pqid></control><display><type>article</type><title>Deep Learning Predicts the Malignant-Transformation-Free Survival of Oral Potentially Malignant Disorders</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Adeoye, John ; Koohi-Moghadam, Mohamad ; Lo, Anthony Wing Ip ; Tsang, Raymond King-Yin ; Chow, Velda Ling Yu ; Zheng, Li-Wu ; Choi, Siu-Wai ; Thomson, Peter ; Su, Yu-Xiong</creator><creatorcontrib>Adeoye, John ; Koohi-Moghadam, Mohamad ; Lo, Anthony Wing Ip ; Tsang, Raymond King-Yin ; Chow, Velda Ling Yu ; Zheng, Li-Wu ; Choi, Siu-Wai ; Thomson, Peter ; Su, Yu-Xiong</creatorcontrib><description>Machine-intelligence platforms for the prediction of the probability of malignant transformation of oral potentially malignant disorders are required as adjunctive decision-making platforms in contemporary clinical practice. This study utilized time-to-event learning models to predict malignant transformation in oral leukoplakia and oral lichenoid lesions. A total of 1098 patients with oral white lesions from two institutions were included in this study. In all, 26 features available from electronic health records were used to train four learning algorithms—Cox-Time, DeepHit, DeepSurv, random survival forest (RSF)—and one standard statistical method—Cox proportional hazards model. Discriminatory performance, calibration of survival estimates, and model stability were assessed using a concordance index (c-index), integrated Brier score (IBS), and standard deviation of the averaged c-index and IBS following training cross-validation. This study found that DeepSurv (c-index: 0.95, IBS: 0.04) and RSF (c-index: 0.91, IBS: 0.03) were the two outperforming models based on discrimination and calibration following internal validation. However, DeepSurv was more stable than RSF upon cross-validation. External validation confirmed the utility of DeepSurv for discrimination (c-index—0.82 vs. 0.73) and RSF for individual survival estimates (0.18 vs. 0.03). We deployed the DeepSurv model to encourage incipient application in clinical practice. Overall, time-to-event models are successful in predicting the malignant transformation of oral leukoplakia and oral lichenoid lesions.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers13236054</identifier><identifier>PMID: 34885164</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alcohol ; Algorithms ; Artificial intelligence ; Biopsy ; Calibration ; Clinical outcomes ; Datasets ; Decision making ; Deep learning ; Diagnosis ; Disease ; Electronic medical records ; Head & neck cancer ; Hospitals ; Intelligence ; Irritable bowel syndrome ; Learning algorithms ; Lesions ; Leukokeratosis ; Machine learning ; Malignancy ; Maxillofacial surgery ; Medical prognosis ; Mouth ; Oral carcinoma ; Otolaryngology ; Probability ; Survival ; Tumors ; Variables</subject><ispartof>Cancers, 2021-12, Vol.13 (23), p.6054</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-514c106a30915fcce7913a294d7a42d5a4c5fb7ee755d6207e6ac5ec981ed1493</citedby><cites>FETCH-LOGICAL-c398t-514c106a30915fcce7913a294d7a42d5a4c5fb7ee755d6207e6ac5ec981ed1493</cites><orcidid>0000-0003-3493-1463 ; 0000-0002-9388-310X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2608080167/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2608080167?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25744,27915,27916,37003,37004,44581,53782,53784,74887</link.rule.ids></links><search><creatorcontrib>Adeoye, John</creatorcontrib><creatorcontrib>Koohi-Moghadam, Mohamad</creatorcontrib><creatorcontrib>Lo, Anthony Wing Ip</creatorcontrib><creatorcontrib>Tsang, Raymond King-Yin</creatorcontrib><creatorcontrib>Chow, Velda Ling Yu</creatorcontrib><creatorcontrib>Zheng, Li-Wu</creatorcontrib><creatorcontrib>Choi, Siu-Wai</creatorcontrib><creatorcontrib>Thomson, Peter</creatorcontrib><creatorcontrib>Su, Yu-Xiong</creatorcontrib><title>Deep Learning Predicts the Malignant-Transformation-Free Survival of Oral Potentially Malignant Disorders</title><title>Cancers</title><description>Machine-intelligence platforms for the prediction of the probability of malignant transformation of oral potentially malignant disorders are required as adjunctive decision-making platforms in contemporary clinical practice. This study utilized time-to-event learning models to predict malignant transformation in oral leukoplakia and oral lichenoid lesions. A total of 1098 patients with oral white lesions from two institutions were included in this study. In all, 26 features available from electronic health records were used to train four learning algorithms—Cox-Time, DeepHit, DeepSurv, random survival forest (RSF)—and one standard statistical method—Cox proportional hazards model. Discriminatory performance, calibration of survival estimates, and model stability were assessed using a concordance index (c-index), integrated Brier score (IBS), and standard deviation of the averaged c-index and IBS following training cross-validation. This study found that DeepSurv (c-index: 0.95, IBS: 0.04) and RSF (c-index: 0.91, IBS: 0.03) were the two outperforming models based on discrimination and calibration following internal validation. However, DeepSurv was more stable than RSF upon cross-validation. External validation confirmed the utility of DeepSurv for discrimination (c-index—0.82 vs. 0.73) and RSF for individual survival estimates (0.18 vs. 0.03). We deployed the DeepSurv model to encourage incipient application in clinical practice. Overall, time-to-event models are successful in predicting the malignant transformation of oral leukoplakia and oral lichenoid lesions.</description><subject>Alcohol</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Biopsy</subject><subject>Calibration</subject><subject>Clinical outcomes</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Disease</subject><subject>Electronic medical records</subject><subject>Head & neck cancer</subject><subject>Hospitals</subject><subject>Intelligence</subject><subject>Irritable bowel syndrome</subject><subject>Learning algorithms</subject><subject>Lesions</subject><subject>Leukokeratosis</subject><subject>Machine learning</subject><subject>Malignancy</subject><subject>Maxillofacial surgery</subject><subject>Medical prognosis</subject><subject>Mouth</subject><subject>Oral carcinoma</subject><subject>Otolaryngology</subject><subject>Probability</subject><subject>Survival</subject><subject>Tumors</subject><subject>Variables</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkctLHEEQxpsQiaKevQ7k4mViv3v6EhCNUVhRiDk3ZU_N2jLbvemeWfC_T_vAV9WhCupXH19RhBww-kMIS488RI-5MMGFpkp-ITucGt5qbeXXd_022S_lntYQghltvpFtIbtOMS13SDhFXDcLhBxDXDbXGfvgp9JMd9hcwhiWEeLU3mSIZUh5BVNIsT3LiM2fOW_CBsYmDc1VrvU6TRinAOP48LbanIaScl9t7pGtAcaC-y91l_w9-3Vzct4urn5fnBwvWi9sN7WKSc-oBkEtU4P3aCwTwK3sDUjeK5BeDbcG0SjV63okavAKve0Y9kxasUt-Puuu59sV9r56qu7cOocV5AeXILiPkxju3DJtXKeV4VxUgcMXgZz-zVgmtwrF4zhCxDQXxzXtlBDK8op-_4TepznHet4TVZNpU6mjZ8rnVErG4dUMo-7xk-7TJ8V_YquSvg</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Adeoye, John</creator><creator>Koohi-Moghadam, Mohamad</creator><creator>Lo, Anthony Wing Ip</creator><creator>Tsang, Raymond King-Yin</creator><creator>Chow, Velda Ling Yu</creator><creator>Zheng, Li-Wu</creator><creator>Choi, Siu-Wai</creator><creator>Thomson, Peter</creator><creator>Su, Yu-Xiong</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3493-1463</orcidid><orcidid>https://orcid.org/0000-0002-9388-310X</orcidid></search><sort><creationdate>20211201</creationdate><title>Deep Learning Predicts the Malignant-Transformation-Free Survival of Oral Potentially Malignant Disorders</title><author>Adeoye, John ; Koohi-Moghadam, Mohamad ; Lo, Anthony Wing Ip ; Tsang, Raymond King-Yin ; Chow, Velda Ling Yu ; Zheng, Li-Wu ; Choi, Siu-Wai ; Thomson, Peter ; Su, Yu-Xiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-514c106a30915fcce7913a294d7a42d5a4c5fb7ee755d6207e6ac5ec981ed1493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alcohol</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Biopsy</topic><topic>Calibration</topic><topic>Clinical outcomes</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Disease</topic><topic>Electronic medical records</topic><topic>Head & neck cancer</topic><topic>Hospitals</topic><topic>Intelligence</topic><topic>Irritable bowel syndrome</topic><topic>Learning algorithms</topic><topic>Lesions</topic><topic>Leukokeratosis</topic><topic>Machine learning</topic><topic>Malignancy</topic><topic>Maxillofacial surgery</topic><topic>Medical prognosis</topic><topic>Mouth</topic><topic>Oral carcinoma</topic><topic>Otolaryngology</topic><topic>Probability</topic><topic>Survival</topic><topic>Tumors</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adeoye, John</creatorcontrib><creatorcontrib>Koohi-Moghadam, Mohamad</creatorcontrib><creatorcontrib>Lo, Anthony Wing Ip</creatorcontrib><creatorcontrib>Tsang, Raymond King-Yin</creatorcontrib><creatorcontrib>Chow, Velda Ling Yu</creatorcontrib><creatorcontrib>Zheng, Li-Wu</creatorcontrib><creatorcontrib>Choi, Siu-Wai</creatorcontrib><creatorcontrib>Thomson, Peter</creatorcontrib><creatorcontrib>Su, Yu-Xiong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adeoye, John</au><au>Koohi-Moghadam, Mohamad</au><au>Lo, Anthony Wing Ip</au><au>Tsang, Raymond King-Yin</au><au>Chow, Velda Ling Yu</au><au>Zheng, Li-Wu</au><au>Choi, Siu-Wai</au><au>Thomson, Peter</au><au>Su, Yu-Xiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning Predicts the Malignant-Transformation-Free Survival of Oral Potentially Malignant Disorders</atitle><jtitle>Cancers</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>13</volume><issue>23</issue><spage>6054</spage><pages>6054-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Machine-intelligence platforms for the prediction of the probability of malignant transformation of oral potentially malignant disorders are required as adjunctive decision-making platforms in contemporary clinical practice. This study utilized time-to-event learning models to predict malignant transformation in oral leukoplakia and oral lichenoid lesions. A total of 1098 patients with oral white lesions from two institutions were included in this study. In all, 26 features available from electronic health records were used to train four learning algorithms—Cox-Time, DeepHit, DeepSurv, random survival forest (RSF)—and one standard statistical method—Cox proportional hazards model. Discriminatory performance, calibration of survival estimates, and model stability were assessed using a concordance index (c-index), integrated Brier score (IBS), and standard deviation of the averaged c-index and IBS following training cross-validation. This study found that DeepSurv (c-index: 0.95, IBS: 0.04) and RSF (c-index: 0.91, IBS: 0.03) were the two outperforming models based on discrimination and calibration following internal validation. However, DeepSurv was more stable than RSF upon cross-validation. External validation confirmed the utility of DeepSurv for discrimination (c-index—0.82 vs. 0.73) and RSF for individual survival estimates (0.18 vs. 0.03). We deployed the DeepSurv model to encourage incipient application in clinical practice. Overall, time-to-event models are successful in predicting the malignant transformation of oral leukoplakia and oral lichenoid lesions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34885164</pmid><doi>10.3390/cancers13236054</doi><orcidid>https://orcid.org/0000-0003-3493-1463</orcidid><orcidid>https://orcid.org/0000-0002-9388-310X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-6694 |
ispartof | Cancers, 2021-12, Vol.13 (23), p.6054 |
issn | 2072-6694 2072-6694 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8657223 |
source | Publicly Available Content Database; PubMed Central |
subjects | Alcohol Algorithms Artificial intelligence Biopsy Calibration Clinical outcomes Datasets Decision making Deep learning Diagnosis Disease Electronic medical records Head & neck cancer Hospitals Intelligence Irritable bowel syndrome Learning algorithms Lesions Leukokeratosis Machine learning Malignancy Maxillofacial surgery Medical prognosis Mouth Oral carcinoma Otolaryngology Probability Survival Tumors Variables |
title | Deep Learning Predicts the Malignant-Transformation-Free Survival of Oral Potentially Malignant Disorders |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A39%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20Predicts%20the%20Malignant-Transformation-Free%20Survival%20of%20Oral%20Potentially%20Malignant%20Disorders&rft.jtitle=Cancers&rft.au=Adeoye,%20John&rft.date=2021-12-01&rft.volume=13&rft.issue=23&rft.spage=6054&rft.pages=6054-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers13236054&rft_dat=%3Cproquest_pubme%3E2608080167%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-514c106a30915fcce7913a294d7a42d5a4c5fb7ee755d6207e6ac5ec981ed1493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2608080167&rft_id=info:pmid/34885164&rfr_iscdi=true |