Loading…
Internal Modifications to Optimize Pollution and Emissions of Internal Combustion Engines through Multiple-Criteria Decision-Making and Artificial Neural Networks
The present work proposes several modifications to optimize both emissions and consumption in a commercial marine diesel engine. A numerical model was carried out to characterize the emissions and consumption of the engine under several performance parameters. Particularly, five internal modificatio...
Saved in:
Published in: | International journal of environmental research and public health 2021-12, Vol.18 (23), p.12823 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c421t-ec29be4daea36e8d76230bfca3273f6e340342922b49d2dab5242c1f836a5e673 |
---|---|
cites | cdi_FETCH-LOGICAL-c421t-ec29be4daea36e8d76230bfca3273f6e340342922b49d2dab5242c1f836a5e673 |
container_end_page | |
container_issue | 23 |
container_start_page | 12823 |
container_title | International journal of environmental research and public health |
container_volume | 18 |
creator | Galdo, María Isabel Lamas Miranda, Javier Telmo Lorenzo, José Manuel Rebollido Caccia, Claudio Giovanni |
description | The present work proposes several modifications to optimize both emissions and consumption in a commercial marine diesel engine. A numerical model was carried out to characterize the emissions and consumption of the engine under several performance parameters. Particularly, five internal modifications were analyzed: water addition; exhaust gas recirculation; and modification of the intake valve closing, overlap timing, and cooling water temperature. It was found that the result on the emissions and consumption presents conflicting criteria, and thus, a multiple-criteria decision-making model was carried out to characterize the most appropriate parameters. In order to analyze a high number of possibilities in a reasonable time, an artificial neural network was developed. |
doi_str_mv | 10.3390/ijerph182312823 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8657229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608540600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-ec29be4daea36e8d76230bfca3273f6e340342922b49d2dab5242c1f836a5e673</originalsourceid><addsrcrecordid>eNpdkUtvEzEUhS1ERUtgzQ5ZYsNmqF9xZjZIVQhQqWm7gLXlmbmTOJ2xBz9A8HP4pXiSErXd-Fr2d4-vz0HoDSUfOK_IudmBH7e0ZJyyvDxDZ1RKUghJ6PMH-1P0MoQdIbwUsnqBTrkoSzkX1Rn6e2kjeKt7vHat6Uyjo3E24OjwzRjNYP4AvnV9n6ZjrG2LV4MJYc-4Dh-7l26oU9hDK7sxFrLE1ru02eJ16qMZeyiW3mTaaPwJGjNJFGt9Z-xmL3vh4_S8yVrXkPy-xF_O34VX6KTTfYDX93WGvn9efVt-La5uvlwuL66KRjAaC2hYVYNoNWguoWwXknFSd43mbME7CVwQLljFWC2qlrW6njPBGtqVXOo5yAWfoY8H3THVA7QN2JjHUKM3g_a_ldNGPb6xZqs27qfKVi4Yq7LA-3sB734kCFFlqxroe23BpaCYJOVcEJlzmKF3T9CdS5ORB4rSKqeTqfMD1XgXgofuOAwlaspfPck_d7x9-Icj_z9w_g-c37GC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608119549</pqid></control><display><type>article</type><title>Internal Modifications to Optimize Pollution and Emissions of Internal Combustion Engines through Multiple-Criteria Decision-Making and Artificial Neural Networks</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Galdo, María Isabel Lamas ; Miranda, Javier Telmo ; Lorenzo, José Manuel Rebollido ; Caccia, Claudio Giovanni</creator><creatorcontrib>Galdo, María Isabel Lamas ; Miranda, Javier Telmo ; Lorenzo, José Manuel Rebollido ; Caccia, Claudio Giovanni</creatorcontrib><description>The present work proposes several modifications to optimize both emissions and consumption in a commercial marine diesel engine. A numerical model was carried out to characterize the emissions and consumption of the engine under several performance parameters. Particularly, five internal modifications were analyzed: water addition; exhaust gas recirculation; and modification of the intake valve closing, overlap timing, and cooling water temperature. It was found that the result on the emissions and consumption presents conflicting criteria, and thus, a multiple-criteria decision-making model was carried out to characterize the most appropriate parameters. In order to analyze a high number of possibilities in a reasonable time, an artificial neural network was developed.</description><identifier>ISSN: 1660-4601</identifier><identifier>ISSN: 1661-7827</identifier><identifier>EISSN: 1660-4601</identifier><identifier>DOI: 10.3390/ijerph182312823</identifier><identifier>PMID: 34886549</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Air pollution ; Cooling ; Cooling water ; Decision making ; Diesel engines ; Emissions ; Engine valves ; Environmental Pollution ; Exhaust gases ; Gasoline ; Industrial plant emissions ; Internal combustion engines ; Marine engines ; Mathematical models ; Multiple criterion ; Neural networks ; Neural Networks, Computer ; Numerical models ; Parameter modification ; Temperature ; Vehicle Emissions ; Water temperature</subject><ispartof>International journal of environmental research and public health, 2021-12, Vol.18 (23), p.12823</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-ec29be4daea36e8d76230bfca3273f6e340342922b49d2dab5242c1f836a5e673</citedby><cites>FETCH-LOGICAL-c421t-ec29be4daea36e8d76230bfca3273f6e340342922b49d2dab5242c1f836a5e673</cites><orcidid>0000-0002-7905-0320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2608119549/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2608119549?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34886549$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Galdo, María Isabel Lamas</creatorcontrib><creatorcontrib>Miranda, Javier Telmo</creatorcontrib><creatorcontrib>Lorenzo, José Manuel Rebollido</creatorcontrib><creatorcontrib>Caccia, Claudio Giovanni</creatorcontrib><title>Internal Modifications to Optimize Pollution and Emissions of Internal Combustion Engines through Multiple-Criteria Decision-Making and Artificial Neural Networks</title><title>International journal of environmental research and public health</title><addtitle>Int J Environ Res Public Health</addtitle><description>The present work proposes several modifications to optimize both emissions and consumption in a commercial marine diesel engine. A numerical model was carried out to characterize the emissions and consumption of the engine under several performance parameters. Particularly, five internal modifications were analyzed: water addition; exhaust gas recirculation; and modification of the intake valve closing, overlap timing, and cooling water temperature. It was found that the result on the emissions and consumption presents conflicting criteria, and thus, a multiple-criteria decision-making model was carried out to characterize the most appropriate parameters. In order to analyze a high number of possibilities in a reasonable time, an artificial neural network was developed.</description><subject>Air pollution</subject><subject>Cooling</subject><subject>Cooling water</subject><subject>Decision making</subject><subject>Diesel engines</subject><subject>Emissions</subject><subject>Engine valves</subject><subject>Environmental Pollution</subject><subject>Exhaust gases</subject><subject>Gasoline</subject><subject>Industrial plant emissions</subject><subject>Internal combustion engines</subject><subject>Marine engines</subject><subject>Mathematical models</subject><subject>Multiple criterion</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Numerical models</subject><subject>Parameter modification</subject><subject>Temperature</subject><subject>Vehicle Emissions</subject><subject>Water temperature</subject><issn>1660-4601</issn><issn>1661-7827</issn><issn>1660-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkUtvEzEUhS1ERUtgzQ5ZYsNmqF9xZjZIVQhQqWm7gLXlmbmTOJ2xBz9A8HP4pXiSErXd-Fr2d4-vz0HoDSUfOK_IudmBH7e0ZJyyvDxDZ1RKUghJ6PMH-1P0MoQdIbwUsnqBTrkoSzkX1Rn6e2kjeKt7vHat6Uyjo3E24OjwzRjNYP4AvnV9n6ZjrG2LV4MJYc-4Dh-7l26oU9hDK7sxFrLE1ru02eJ16qMZeyiW3mTaaPwJGjNJFGt9Z-xmL3vh4_S8yVrXkPy-xF_O34VX6KTTfYDX93WGvn9efVt-La5uvlwuL66KRjAaC2hYVYNoNWguoWwXknFSd43mbME7CVwQLljFWC2qlrW6njPBGtqVXOo5yAWfoY8H3THVA7QN2JjHUKM3g_a_ldNGPb6xZqs27qfKVi4Yq7LA-3sB734kCFFlqxroe23BpaCYJOVcEJlzmKF3T9CdS5ORB4rSKqeTqfMD1XgXgofuOAwlaspfPck_d7x9-Icj_z9w_g-c37GC</recordid><startdate>20211205</startdate><enddate>20211205</enddate><creator>Galdo, María Isabel Lamas</creator><creator>Miranda, Javier Telmo</creator><creator>Lorenzo, José Manuel Rebollido</creator><creator>Caccia, Claudio Giovanni</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7905-0320</orcidid></search><sort><creationdate>20211205</creationdate><title>Internal Modifications to Optimize Pollution and Emissions of Internal Combustion Engines through Multiple-Criteria Decision-Making and Artificial Neural Networks</title><author>Galdo, María Isabel Lamas ; Miranda, Javier Telmo ; Lorenzo, José Manuel Rebollido ; Caccia, Claudio Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-ec29be4daea36e8d76230bfca3273f6e340342922b49d2dab5242c1f836a5e673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air pollution</topic><topic>Cooling</topic><topic>Cooling water</topic><topic>Decision making</topic><topic>Diesel engines</topic><topic>Emissions</topic><topic>Engine valves</topic><topic>Environmental Pollution</topic><topic>Exhaust gases</topic><topic>Gasoline</topic><topic>Industrial plant emissions</topic><topic>Internal combustion engines</topic><topic>Marine engines</topic><topic>Mathematical models</topic><topic>Multiple criterion</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Numerical models</topic><topic>Parameter modification</topic><topic>Temperature</topic><topic>Vehicle Emissions</topic><topic>Water temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galdo, María Isabel Lamas</creatorcontrib><creatorcontrib>Miranda, Javier Telmo</creatorcontrib><creatorcontrib>Lorenzo, José Manuel Rebollido</creatorcontrib><creatorcontrib>Caccia, Claudio Giovanni</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of environmental research and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galdo, María Isabel Lamas</au><au>Miranda, Javier Telmo</au><au>Lorenzo, José Manuel Rebollido</au><au>Caccia, Claudio Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Internal Modifications to Optimize Pollution and Emissions of Internal Combustion Engines through Multiple-Criteria Decision-Making and Artificial Neural Networks</atitle><jtitle>International journal of environmental research and public health</jtitle><addtitle>Int J Environ Res Public Health</addtitle><date>2021-12-05</date><risdate>2021</risdate><volume>18</volume><issue>23</issue><spage>12823</spage><pages>12823-</pages><issn>1660-4601</issn><issn>1661-7827</issn><eissn>1660-4601</eissn><abstract>The present work proposes several modifications to optimize both emissions and consumption in a commercial marine diesel engine. A numerical model was carried out to characterize the emissions and consumption of the engine under several performance parameters. Particularly, five internal modifications were analyzed: water addition; exhaust gas recirculation; and modification of the intake valve closing, overlap timing, and cooling water temperature. It was found that the result on the emissions and consumption presents conflicting criteria, and thus, a multiple-criteria decision-making model was carried out to characterize the most appropriate parameters. In order to analyze a high number of possibilities in a reasonable time, an artificial neural network was developed.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34886549</pmid><doi>10.3390/ijerph182312823</doi><orcidid>https://orcid.org/0000-0002-7905-0320</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-4601 |
ispartof | International journal of environmental research and public health, 2021-12, Vol.18 (23), p.12823 |
issn | 1660-4601 1661-7827 1660-4601 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8657229 |
source | PubMed Central Free; Publicly Available Content Database; Free Full-Text Journals in Chemistry |
subjects | Air pollution Cooling Cooling water Decision making Diesel engines Emissions Engine valves Environmental Pollution Exhaust gases Gasoline Industrial plant emissions Internal combustion engines Marine engines Mathematical models Multiple criterion Neural networks Neural Networks, Computer Numerical models Parameter modification Temperature Vehicle Emissions Water temperature |
title | Internal Modifications to Optimize Pollution and Emissions of Internal Combustion Engines through Multiple-Criteria Decision-Making and Artificial Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A09%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Internal%20Modifications%20to%20Optimize%20Pollution%20and%20Emissions%20of%20Internal%20Combustion%20Engines%20through%20Multiple-Criteria%20Decision-Making%20and%20Artificial%20Neural%20Networks&rft.jtitle=International%20journal%20of%20environmental%20research%20and%20public%20health&rft.au=Galdo,%20Mar%C3%ADa%20Isabel%20Lamas&rft.date=2021-12-05&rft.volume=18&rft.issue=23&rft.spage=12823&rft.pages=12823-&rft.issn=1660-4601&rft.eissn=1660-4601&rft_id=info:doi/10.3390/ijerph182312823&rft_dat=%3Cproquest_pubme%3E2608540600%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-ec29be4daea36e8d76230bfca3273f6e340342922b49d2dab5242c1f836a5e673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2608119549&rft_id=info:pmid/34886549&rfr_iscdi=true |