Loading…

Internal Modifications to Optimize Pollution and Emissions of Internal Combustion Engines through Multiple-Criteria Decision-Making and Artificial Neural Networks

The present work proposes several modifications to optimize both emissions and consumption in a commercial marine diesel engine. A numerical model was carried out to characterize the emissions and consumption of the engine under several performance parameters. Particularly, five internal modificatio...

Full description

Saved in:
Bibliographic Details
Published in:International journal of environmental research and public health 2021-12, Vol.18 (23), p.12823
Main Authors: Galdo, María Isabel Lamas, Miranda, Javier Telmo, Lorenzo, José Manuel Rebollido, Caccia, Claudio Giovanni
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c421t-ec29be4daea36e8d76230bfca3273f6e340342922b49d2dab5242c1f836a5e673
cites cdi_FETCH-LOGICAL-c421t-ec29be4daea36e8d76230bfca3273f6e340342922b49d2dab5242c1f836a5e673
container_end_page
container_issue 23
container_start_page 12823
container_title International journal of environmental research and public health
container_volume 18
creator Galdo, María Isabel Lamas
Miranda, Javier Telmo
Lorenzo, José Manuel Rebollido
Caccia, Claudio Giovanni
description The present work proposes several modifications to optimize both emissions and consumption in a commercial marine diesel engine. A numerical model was carried out to characterize the emissions and consumption of the engine under several performance parameters. Particularly, five internal modifications were analyzed: water addition; exhaust gas recirculation; and modification of the intake valve closing, overlap timing, and cooling water temperature. It was found that the result on the emissions and consumption presents conflicting criteria, and thus, a multiple-criteria decision-making model was carried out to characterize the most appropriate parameters. In order to analyze a high number of possibilities in a reasonable time, an artificial neural network was developed.
doi_str_mv 10.3390/ijerph182312823
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8657229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608540600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-ec29be4daea36e8d76230bfca3273f6e340342922b49d2dab5242c1f836a5e673</originalsourceid><addsrcrecordid>eNpdkUtvEzEUhS1ERUtgzQ5ZYsNmqF9xZjZIVQhQqWm7gLXlmbmTOJ2xBz9A8HP4pXiSErXd-Fr2d4-vz0HoDSUfOK_IudmBH7e0ZJyyvDxDZ1RKUghJ6PMH-1P0MoQdIbwUsnqBTrkoSzkX1Rn6e2kjeKt7vHat6Uyjo3E24OjwzRjNYP4AvnV9n6ZjrG2LV4MJYc-4Dh-7l26oU9hDK7sxFrLE1ru02eJ16qMZeyiW3mTaaPwJGjNJFGt9Z-xmL3vh4_S8yVrXkPy-xF_O34VX6KTTfYDX93WGvn9efVt-La5uvlwuL66KRjAaC2hYVYNoNWguoWwXknFSd43mbME7CVwQLljFWC2qlrW6njPBGtqVXOo5yAWfoY8H3THVA7QN2JjHUKM3g_a_ldNGPb6xZqs27qfKVi4Yq7LA-3sB734kCFFlqxroe23BpaCYJOVcEJlzmKF3T9CdS5ORB4rSKqeTqfMD1XgXgofuOAwlaspfPck_d7x9-Icj_z9w_g-c37GC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608119549</pqid></control><display><type>article</type><title>Internal Modifications to Optimize Pollution and Emissions of Internal Combustion Engines through Multiple-Criteria Decision-Making and Artificial Neural Networks</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Galdo, María Isabel Lamas ; Miranda, Javier Telmo ; Lorenzo, José Manuel Rebollido ; Caccia, Claudio Giovanni</creator><creatorcontrib>Galdo, María Isabel Lamas ; Miranda, Javier Telmo ; Lorenzo, José Manuel Rebollido ; Caccia, Claudio Giovanni</creatorcontrib><description>The present work proposes several modifications to optimize both emissions and consumption in a commercial marine diesel engine. A numerical model was carried out to characterize the emissions and consumption of the engine under several performance parameters. Particularly, five internal modifications were analyzed: water addition; exhaust gas recirculation; and modification of the intake valve closing, overlap timing, and cooling water temperature. It was found that the result on the emissions and consumption presents conflicting criteria, and thus, a multiple-criteria decision-making model was carried out to characterize the most appropriate parameters. In order to analyze a high number of possibilities in a reasonable time, an artificial neural network was developed.</description><identifier>ISSN: 1660-4601</identifier><identifier>ISSN: 1661-7827</identifier><identifier>EISSN: 1660-4601</identifier><identifier>DOI: 10.3390/ijerph182312823</identifier><identifier>PMID: 34886549</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Air pollution ; Cooling ; Cooling water ; Decision making ; Diesel engines ; Emissions ; Engine valves ; Environmental Pollution ; Exhaust gases ; Gasoline ; Industrial plant emissions ; Internal combustion engines ; Marine engines ; Mathematical models ; Multiple criterion ; Neural networks ; Neural Networks, Computer ; Numerical models ; Parameter modification ; Temperature ; Vehicle Emissions ; Water temperature</subject><ispartof>International journal of environmental research and public health, 2021-12, Vol.18 (23), p.12823</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-ec29be4daea36e8d76230bfca3273f6e340342922b49d2dab5242c1f836a5e673</citedby><cites>FETCH-LOGICAL-c421t-ec29be4daea36e8d76230bfca3273f6e340342922b49d2dab5242c1f836a5e673</cites><orcidid>0000-0002-7905-0320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2608119549/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2608119549?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34886549$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Galdo, María Isabel Lamas</creatorcontrib><creatorcontrib>Miranda, Javier Telmo</creatorcontrib><creatorcontrib>Lorenzo, José Manuel Rebollido</creatorcontrib><creatorcontrib>Caccia, Claudio Giovanni</creatorcontrib><title>Internal Modifications to Optimize Pollution and Emissions of Internal Combustion Engines through Multiple-Criteria Decision-Making and Artificial Neural Networks</title><title>International journal of environmental research and public health</title><addtitle>Int J Environ Res Public Health</addtitle><description>The present work proposes several modifications to optimize both emissions and consumption in a commercial marine diesel engine. A numerical model was carried out to characterize the emissions and consumption of the engine under several performance parameters. Particularly, five internal modifications were analyzed: water addition; exhaust gas recirculation; and modification of the intake valve closing, overlap timing, and cooling water temperature. It was found that the result on the emissions and consumption presents conflicting criteria, and thus, a multiple-criteria decision-making model was carried out to characterize the most appropriate parameters. In order to analyze a high number of possibilities in a reasonable time, an artificial neural network was developed.</description><subject>Air pollution</subject><subject>Cooling</subject><subject>Cooling water</subject><subject>Decision making</subject><subject>Diesel engines</subject><subject>Emissions</subject><subject>Engine valves</subject><subject>Environmental Pollution</subject><subject>Exhaust gases</subject><subject>Gasoline</subject><subject>Industrial plant emissions</subject><subject>Internal combustion engines</subject><subject>Marine engines</subject><subject>Mathematical models</subject><subject>Multiple criterion</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Numerical models</subject><subject>Parameter modification</subject><subject>Temperature</subject><subject>Vehicle Emissions</subject><subject>Water temperature</subject><issn>1660-4601</issn><issn>1661-7827</issn><issn>1660-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkUtvEzEUhS1ERUtgzQ5ZYsNmqF9xZjZIVQhQqWm7gLXlmbmTOJ2xBz9A8HP4pXiSErXd-Fr2d4-vz0HoDSUfOK_IudmBH7e0ZJyyvDxDZ1RKUghJ6PMH-1P0MoQdIbwUsnqBTrkoSzkX1Rn6e2kjeKt7vHat6Uyjo3E24OjwzRjNYP4AvnV9n6ZjrG2LV4MJYc-4Dh-7l26oU9hDK7sxFrLE1ru02eJ16qMZeyiW3mTaaPwJGjNJFGt9Z-xmL3vh4_S8yVrXkPy-xF_O34VX6KTTfYDX93WGvn9efVt-La5uvlwuL66KRjAaC2hYVYNoNWguoWwXknFSd43mbME7CVwQLljFWC2qlrW6njPBGtqVXOo5yAWfoY8H3THVA7QN2JjHUKM3g_a_ldNGPb6xZqs27qfKVi4Yq7LA-3sB734kCFFlqxroe23BpaCYJOVcEJlzmKF3T9CdS5ORB4rSKqeTqfMD1XgXgofuOAwlaspfPck_d7x9-Icj_z9w_g-c37GC</recordid><startdate>20211205</startdate><enddate>20211205</enddate><creator>Galdo, María Isabel Lamas</creator><creator>Miranda, Javier Telmo</creator><creator>Lorenzo, José Manuel Rebollido</creator><creator>Caccia, Claudio Giovanni</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7905-0320</orcidid></search><sort><creationdate>20211205</creationdate><title>Internal Modifications to Optimize Pollution and Emissions of Internal Combustion Engines through Multiple-Criteria Decision-Making and Artificial Neural Networks</title><author>Galdo, María Isabel Lamas ; Miranda, Javier Telmo ; Lorenzo, José Manuel Rebollido ; Caccia, Claudio Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-ec29be4daea36e8d76230bfca3273f6e340342922b49d2dab5242c1f836a5e673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air pollution</topic><topic>Cooling</topic><topic>Cooling water</topic><topic>Decision making</topic><topic>Diesel engines</topic><topic>Emissions</topic><topic>Engine valves</topic><topic>Environmental Pollution</topic><topic>Exhaust gases</topic><topic>Gasoline</topic><topic>Industrial plant emissions</topic><topic>Internal combustion engines</topic><topic>Marine engines</topic><topic>Mathematical models</topic><topic>Multiple criterion</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Numerical models</topic><topic>Parameter modification</topic><topic>Temperature</topic><topic>Vehicle Emissions</topic><topic>Water temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galdo, María Isabel Lamas</creatorcontrib><creatorcontrib>Miranda, Javier Telmo</creatorcontrib><creatorcontrib>Lorenzo, José Manuel Rebollido</creatorcontrib><creatorcontrib>Caccia, Claudio Giovanni</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of environmental research and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galdo, María Isabel Lamas</au><au>Miranda, Javier Telmo</au><au>Lorenzo, José Manuel Rebollido</au><au>Caccia, Claudio Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Internal Modifications to Optimize Pollution and Emissions of Internal Combustion Engines through Multiple-Criteria Decision-Making and Artificial Neural Networks</atitle><jtitle>International journal of environmental research and public health</jtitle><addtitle>Int J Environ Res Public Health</addtitle><date>2021-12-05</date><risdate>2021</risdate><volume>18</volume><issue>23</issue><spage>12823</spage><pages>12823-</pages><issn>1660-4601</issn><issn>1661-7827</issn><eissn>1660-4601</eissn><abstract>The present work proposes several modifications to optimize both emissions and consumption in a commercial marine diesel engine. A numerical model was carried out to characterize the emissions and consumption of the engine under several performance parameters. Particularly, five internal modifications were analyzed: water addition; exhaust gas recirculation; and modification of the intake valve closing, overlap timing, and cooling water temperature. It was found that the result on the emissions and consumption presents conflicting criteria, and thus, a multiple-criteria decision-making model was carried out to characterize the most appropriate parameters. In order to analyze a high number of possibilities in a reasonable time, an artificial neural network was developed.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34886549</pmid><doi>10.3390/ijerph182312823</doi><orcidid>https://orcid.org/0000-0002-7905-0320</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1660-4601
ispartof International journal of environmental research and public health, 2021-12, Vol.18 (23), p.12823
issn 1660-4601
1661-7827
1660-4601
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8657229
source PubMed Central Free; Publicly Available Content Database; Free Full-Text Journals in Chemistry
subjects Air pollution
Cooling
Cooling water
Decision making
Diesel engines
Emissions
Engine valves
Environmental Pollution
Exhaust gases
Gasoline
Industrial plant emissions
Internal combustion engines
Marine engines
Mathematical models
Multiple criterion
Neural networks
Neural Networks, Computer
Numerical models
Parameter modification
Temperature
Vehicle Emissions
Water temperature
title Internal Modifications to Optimize Pollution and Emissions of Internal Combustion Engines through Multiple-Criteria Decision-Making and Artificial Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A09%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Internal%20Modifications%20to%20Optimize%20Pollution%20and%20Emissions%20of%20Internal%20Combustion%20Engines%20through%20Multiple-Criteria%20Decision-Making%20and%20Artificial%20Neural%20Networks&rft.jtitle=International%20journal%20of%20environmental%20research%20and%20public%20health&rft.au=Galdo,%20Mar%C3%ADa%20Isabel%20Lamas&rft.date=2021-12-05&rft.volume=18&rft.issue=23&rft.spage=12823&rft.pages=12823-&rft.issn=1660-4601&rft.eissn=1660-4601&rft_id=info:doi/10.3390/ijerph182312823&rft_dat=%3Cproquest_pubme%3E2608540600%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-ec29be4daea36e8d76230bfca3273f6e340342922b49d2dab5242c1f836a5e673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2608119549&rft_id=info:pmid/34886549&rfr_iscdi=true