Loading…
Use of the O2-Thiosemicarbazide System, for the Leaching of: Gold and Copper from WEEE & Silver Contained in Mining Wastes
Environmental pollution today is a latent risk for humanity, here the need to recycle waste of all kinds. This work is related to the kinetic study of the leaching of gold and copper contained in waste electrical and electronic equipment (WEEE) and silver contained in mining wastes (MW), using the O...
Saved in:
Published in: | Materials 2021-11, Vol.14 (23), p.7329 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Environmental pollution today is a latent risk for humanity, here the need to recycle waste of all kinds. This work is related to the kinetic study of the leaching of gold and copper contained in waste electrical and electronic equipment (WEEE) and silver contained in mining wastes (MW), using the O2-thiosemicarbazide system. The results obtained show that this non-toxic leaching system is adequate for the leaching of said metals. Reaction orders were found ranging from 0 (Cu), 0.93 (Ag), and 2.01 (Au) for the effect of the reagent concentration and maximum recoveries of 77.7% (Cu), 95.8% (Au), and 60% (Ag) were obtained. Likewise, the activation energies found show that the leaching of WEEE is controlled by diffusion (Cu Ea = 9.06 and Au Ea = 18.25 kJ/Kmol), while the leaching of MW (Ea = 45.55 kJ/Kmol) is controlled by the chemical reaction. For the case of stirring rate, it was found a low effect and only particles from WEEE and MW must be suspended in solution to proceed with the leaching. The pH has effect only at values above 8, and finally, for the case of MW, the O2 partial pressure has a market effect, going the Ag leaching from 33% at 0.2 atm up to 60% at a 1 atm. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma14237329 |