Loading…

Diabetic mitochondria are resistant to palmitoyl CoA inhibition of respiration, which is detrimental during ischemia

The bioactive lipid intermediate palmitoyl CoA (PCoA) can inhibit mitochondrial ADP/ATP transport, though the physiological relevance of this regulation remains unclear. We questioned whether myocardial ischemia provides a pathological setting in which PCoA regulation of ADP/ATP transport would be b...

Full description

Saved in:
Bibliographic Details
Published in:The FASEB journal 2021-08, Vol.35 (8), p.e21765-n/a
Main Authors: Kerr, M., Dennis, K. M. J. H., Carr, C. A., Fuller, W., Berridge, G., Rohling, S., Aitken, C. L., Lopez, C., Fischer, R., Miller, J. J., Clarke, K., Tyler, D. J., Heather, L. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4765-ef62ce30caab107cd4b346b93b9e9365f4399af9826190aafac061ab1bcc47773
cites cdi_FETCH-LOGICAL-c4765-ef62ce30caab107cd4b346b93b9e9365f4399af9826190aafac061ab1bcc47773
container_end_page n/a
container_issue 8
container_start_page e21765
container_title The FASEB journal
container_volume 35
creator Kerr, M.
Dennis, K. M. J. H.
Carr, C. A.
Fuller, W.
Berridge, G.
Rohling, S.
Aitken, C. L.
Lopez, C.
Fischer, R.
Miller, J. J.
Clarke, K.
Tyler, D. J.
Heather, L. C.
description The bioactive lipid intermediate palmitoyl CoA (PCoA) can inhibit mitochondrial ADP/ATP transport, though the physiological relevance of this regulation remains unclear. We questioned whether myocardial ischemia provides a pathological setting in which PCoA regulation of ADP/ATP transport would be beneficial, and secondly, whether the chronically elevated lipid content within the diabetic heart could make mitochondria less sensitive to the effects of PCoA. PCoA acutely decreased ADP‐stimulated state 3 respiration and increased the apparent Km for ADP twofold. The half maximal inhibitory concentration (IC50) of PCoA in control mitochondria was 22 µM. This inhibitory effect of PCoA on respiration was blunted in diabetic mitochondria, with no significant difference in the Km for ADP in the presence of PCoA, and an increase in the IC50 to 32 µM PCoA. The competitive inhibition by PCoA was localised to the phosphorylation apparatus, particularly the ADP/ATP carrier (AAC). During ischemia, the AAC imports ATP into the mitochondria, where it is hydrolysed by reversal of the ATP synthase, regenerating the membrane potential. Addition of PCoA dose‐dependently prevented this wasteful ATP hydrolysis for membrane repolarisation during ischemia, however, this beneficial effect was blunted in diabetic mitochondria. Finally, using 31P‐magnetic resonance spectroscopy we demonstrated that diabetic hearts lose ATP more rapidly during ischemia, with a threefold higher ATP decay rate compared with control hearts. In conclusion, PCoA plays a role in protecting mitochondrial energetics during ischemia, by preventing wasteful ATP hydrolysis. However, this beneficial effect is blunted in diabetes, contributing to the impaired energy metabolism seen during myocardial ischemia in the diabetic heart.
doi_str_mv 10.1096/fj.202100394R
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8662312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555973196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4765-ef62ce30caab107cd4b346b93b9e9365f4399af9826190aafac061ab1bcc47773</originalsourceid><addsrcrecordid>eNp9kUtv1DAURi0EokNhyRZ5yYIUPxIn3iCVgUKlSpV4rK0bx27uKIkH20M1_x6PphS66cqyfXT8XX-EvObsjDOt3vvNmWCCMyZ1_e0JWfFGskp1ij0lK9ZpUSkluxPyIqUNY4wzrp6TE1lL3mnVrkj-hNC7jJbOmIMdwzJEBArR0egSpgxLpjnQLUwHYD_RdTinuIzYY8aw0OAP4BYjHLbv6O2IdqSY6OByxNktGSY67CIuN-XUjm5GeEmeeZiSe3W3npKfF59_rL9WV9dfLtfnV5WtW9VUzithnWQWoOestUPdy1r1WvbaaakaX0utwetOKK4ZgAfLFC9sb4ugbeUp-XD0bnf97AZbwkSYzLbkgrg3AdA8vFlwNDfht-mUEpKLInh7J4jh186lbOYyg5smWFzYJSOaptGt5FoVtDqiNoaUovP3z3BmDk0ZvzH_mir8m_-z3dN_qylAfQRucXL7x23m4vtHIXj5NPkH0B6iFg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555973196</pqid></control><display><type>article</type><title>Diabetic mitochondria are resistant to palmitoyl CoA inhibition of respiration, which is detrimental during ischemia</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Kerr, M. ; Dennis, K. M. J. H. ; Carr, C. A. ; Fuller, W. ; Berridge, G. ; Rohling, S. ; Aitken, C. L. ; Lopez, C. ; Fischer, R. ; Miller, J. J. ; Clarke, K. ; Tyler, D. J. ; Heather, L. C.</creator><creatorcontrib>Kerr, M. ; Dennis, K. M. J. H. ; Carr, C. A. ; Fuller, W. ; Berridge, G. ; Rohling, S. ; Aitken, C. L. ; Lopez, C. ; Fischer, R. ; Miller, J. J. ; Clarke, K. ; Tyler, D. J. ; Heather, L. C.</creatorcontrib><description>The bioactive lipid intermediate palmitoyl CoA (PCoA) can inhibit mitochondrial ADP/ATP transport, though the physiological relevance of this regulation remains unclear. We questioned whether myocardial ischemia provides a pathological setting in which PCoA regulation of ADP/ATP transport would be beneficial, and secondly, whether the chronically elevated lipid content within the diabetic heart could make mitochondria less sensitive to the effects of PCoA. PCoA acutely decreased ADP‐stimulated state 3 respiration and increased the apparent Km for ADP twofold. The half maximal inhibitory concentration (IC50) of PCoA in control mitochondria was 22 µM. This inhibitory effect of PCoA on respiration was blunted in diabetic mitochondria, with no significant difference in the Km for ADP in the presence of PCoA, and an increase in the IC50 to 32 µM PCoA. The competitive inhibition by PCoA was localised to the phosphorylation apparatus, particularly the ADP/ATP carrier (AAC). During ischemia, the AAC imports ATP into the mitochondria, where it is hydrolysed by reversal of the ATP synthase, regenerating the membrane potential. Addition of PCoA dose‐dependently prevented this wasteful ATP hydrolysis for membrane repolarisation during ischemia, however, this beneficial effect was blunted in diabetic mitochondria. Finally, using 31P‐magnetic resonance spectroscopy we demonstrated that diabetic hearts lose ATP more rapidly during ischemia, with a threefold higher ATP decay rate compared with control hearts. In conclusion, PCoA plays a role in protecting mitochondrial energetics during ischemia, by preventing wasteful ATP hydrolysis. However, this beneficial effect is blunted in diabetes, contributing to the impaired energy metabolism seen during myocardial ischemia in the diabetic heart.</description><identifier>ISSN: 0892-6638</identifier><identifier>EISSN: 1530-6860</identifier><identifier>DOI: 10.1096/fj.202100394R</identifier><identifier>PMID: 34318967</identifier><language>eng</language><publisher>United States: John Wiley and Sons Inc</publisher><subject>Adenosine Triphosphate - metabolism ; Animals ; Cell Respiration ; diabetes ; Diabetes Mellitus, Type 2 - metabolism ; energetics ; Energy Metabolism ; fatty acids ; heart ; ischemia ; Ischemia - metabolism ; Ischemia - pathology ; Male ; mitochondria ; Mitochondria, Heart - metabolism ; Myocardium - metabolism ; Myocardium - pathology ; Oxygen Consumption ; Palmitoyl Coenzyme A - pharmacology ; Palmitoyl Coenzyme A - physiology ; Rats ; Rats, Wistar</subject><ispartof>The FASEB journal, 2021-08, Vol.35 (8), p.e21765-n/a</ispartof><rights>2021 The Authors. published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology</rights><rights>2021 The Authors. The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4765-ef62ce30caab107cd4b346b93b9e9365f4399af9826190aafac061ab1bcc47773</citedby><cites>FETCH-LOGICAL-c4765-ef62ce30caab107cd4b346b93b9e9365f4399af9826190aafac061ab1bcc47773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34318967$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kerr, M.</creatorcontrib><creatorcontrib>Dennis, K. M. J. H.</creatorcontrib><creatorcontrib>Carr, C. A.</creatorcontrib><creatorcontrib>Fuller, W.</creatorcontrib><creatorcontrib>Berridge, G.</creatorcontrib><creatorcontrib>Rohling, S.</creatorcontrib><creatorcontrib>Aitken, C. L.</creatorcontrib><creatorcontrib>Lopez, C.</creatorcontrib><creatorcontrib>Fischer, R.</creatorcontrib><creatorcontrib>Miller, J. J.</creatorcontrib><creatorcontrib>Clarke, K.</creatorcontrib><creatorcontrib>Tyler, D. J.</creatorcontrib><creatorcontrib>Heather, L. C.</creatorcontrib><title>Diabetic mitochondria are resistant to palmitoyl CoA inhibition of respiration, which is detrimental during ischemia</title><title>The FASEB journal</title><addtitle>FASEB J</addtitle><description>The bioactive lipid intermediate palmitoyl CoA (PCoA) can inhibit mitochondrial ADP/ATP transport, though the physiological relevance of this regulation remains unclear. We questioned whether myocardial ischemia provides a pathological setting in which PCoA regulation of ADP/ATP transport would be beneficial, and secondly, whether the chronically elevated lipid content within the diabetic heart could make mitochondria less sensitive to the effects of PCoA. PCoA acutely decreased ADP‐stimulated state 3 respiration and increased the apparent Km for ADP twofold. The half maximal inhibitory concentration (IC50) of PCoA in control mitochondria was 22 µM. This inhibitory effect of PCoA on respiration was blunted in diabetic mitochondria, with no significant difference in the Km for ADP in the presence of PCoA, and an increase in the IC50 to 32 µM PCoA. The competitive inhibition by PCoA was localised to the phosphorylation apparatus, particularly the ADP/ATP carrier (AAC). During ischemia, the AAC imports ATP into the mitochondria, where it is hydrolysed by reversal of the ATP synthase, regenerating the membrane potential. Addition of PCoA dose‐dependently prevented this wasteful ATP hydrolysis for membrane repolarisation during ischemia, however, this beneficial effect was blunted in diabetic mitochondria. Finally, using 31P‐magnetic resonance spectroscopy we demonstrated that diabetic hearts lose ATP more rapidly during ischemia, with a threefold higher ATP decay rate compared with control hearts. In conclusion, PCoA plays a role in protecting mitochondrial energetics during ischemia, by preventing wasteful ATP hydrolysis. However, this beneficial effect is blunted in diabetes, contributing to the impaired energy metabolism seen during myocardial ischemia in the diabetic heart.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Cell Respiration</subject><subject>diabetes</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>energetics</subject><subject>Energy Metabolism</subject><subject>fatty acids</subject><subject>heart</subject><subject>ischemia</subject><subject>Ischemia - metabolism</subject><subject>Ischemia - pathology</subject><subject>Male</subject><subject>mitochondria</subject><subject>Mitochondria, Heart - metabolism</subject><subject>Myocardium - metabolism</subject><subject>Myocardium - pathology</subject><subject>Oxygen Consumption</subject><subject>Palmitoyl Coenzyme A - pharmacology</subject><subject>Palmitoyl Coenzyme A - physiology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><issn>0892-6638</issn><issn>1530-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kUtv1DAURi0EokNhyRZ5yYIUPxIn3iCVgUKlSpV4rK0bx27uKIkH20M1_x6PphS66cqyfXT8XX-EvObsjDOt3vvNmWCCMyZ1_e0JWfFGskp1ij0lK9ZpUSkluxPyIqUNY4wzrp6TE1lL3mnVrkj-hNC7jJbOmIMdwzJEBArR0egSpgxLpjnQLUwHYD_RdTinuIzYY8aw0OAP4BYjHLbv6O2IdqSY6OByxNktGSY67CIuN-XUjm5GeEmeeZiSe3W3npKfF59_rL9WV9dfLtfnV5WtW9VUzithnWQWoOestUPdy1r1WvbaaakaX0utwetOKK4ZgAfLFC9sb4ugbeUp-XD0bnf97AZbwkSYzLbkgrg3AdA8vFlwNDfht-mUEpKLInh7J4jh186lbOYyg5smWFzYJSOaptGt5FoVtDqiNoaUovP3z3BmDk0ZvzH_mir8m_-z3dN_qylAfQRucXL7x23m4vtHIXj5NPkH0B6iFg</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Kerr, M.</creator><creator>Dennis, K. M. J. H.</creator><creator>Carr, C. A.</creator><creator>Fuller, W.</creator><creator>Berridge, G.</creator><creator>Rohling, S.</creator><creator>Aitken, C. L.</creator><creator>Lopez, C.</creator><creator>Fischer, R.</creator><creator>Miller, J. J.</creator><creator>Clarke, K.</creator><creator>Tyler, D. J.</creator><creator>Heather, L. C.</creator><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202108</creationdate><title>Diabetic mitochondria are resistant to palmitoyl CoA inhibition of respiration, which is detrimental during ischemia</title><author>Kerr, M. ; Dennis, K. M. J. H. ; Carr, C. A. ; Fuller, W. ; Berridge, G. ; Rohling, S. ; Aitken, C. L. ; Lopez, C. ; Fischer, R. ; Miller, J. J. ; Clarke, K. ; Tyler, D. J. ; Heather, L. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4765-ef62ce30caab107cd4b346b93b9e9365f4399af9826190aafac061ab1bcc47773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Cell Respiration</topic><topic>diabetes</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>energetics</topic><topic>Energy Metabolism</topic><topic>fatty acids</topic><topic>heart</topic><topic>ischemia</topic><topic>Ischemia - metabolism</topic><topic>Ischemia - pathology</topic><topic>Male</topic><topic>mitochondria</topic><topic>Mitochondria, Heart - metabolism</topic><topic>Myocardium - metabolism</topic><topic>Myocardium - pathology</topic><topic>Oxygen Consumption</topic><topic>Palmitoyl Coenzyme A - pharmacology</topic><topic>Palmitoyl Coenzyme A - physiology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kerr, M.</creatorcontrib><creatorcontrib>Dennis, K. M. J. H.</creatorcontrib><creatorcontrib>Carr, C. A.</creatorcontrib><creatorcontrib>Fuller, W.</creatorcontrib><creatorcontrib>Berridge, G.</creatorcontrib><creatorcontrib>Rohling, S.</creatorcontrib><creatorcontrib>Aitken, C. L.</creatorcontrib><creatorcontrib>Lopez, C.</creatorcontrib><creatorcontrib>Fischer, R.</creatorcontrib><creatorcontrib>Miller, J. J.</creatorcontrib><creatorcontrib>Clarke, K.</creatorcontrib><creatorcontrib>Tyler, D. J.</creatorcontrib><creatorcontrib>Heather, L. C.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The FASEB journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kerr, M.</au><au>Dennis, K. M. J. H.</au><au>Carr, C. A.</au><au>Fuller, W.</au><au>Berridge, G.</au><au>Rohling, S.</au><au>Aitken, C. L.</au><au>Lopez, C.</au><au>Fischer, R.</au><au>Miller, J. J.</au><au>Clarke, K.</au><au>Tyler, D. J.</au><au>Heather, L. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diabetic mitochondria are resistant to palmitoyl CoA inhibition of respiration, which is detrimental during ischemia</atitle><jtitle>The FASEB journal</jtitle><addtitle>FASEB J</addtitle><date>2021-08</date><risdate>2021</risdate><volume>35</volume><issue>8</issue><spage>e21765</spage><epage>n/a</epage><pages>e21765-n/a</pages><issn>0892-6638</issn><eissn>1530-6860</eissn><abstract>The bioactive lipid intermediate palmitoyl CoA (PCoA) can inhibit mitochondrial ADP/ATP transport, though the physiological relevance of this regulation remains unclear. We questioned whether myocardial ischemia provides a pathological setting in which PCoA regulation of ADP/ATP transport would be beneficial, and secondly, whether the chronically elevated lipid content within the diabetic heart could make mitochondria less sensitive to the effects of PCoA. PCoA acutely decreased ADP‐stimulated state 3 respiration and increased the apparent Km for ADP twofold. The half maximal inhibitory concentration (IC50) of PCoA in control mitochondria was 22 µM. This inhibitory effect of PCoA on respiration was blunted in diabetic mitochondria, with no significant difference in the Km for ADP in the presence of PCoA, and an increase in the IC50 to 32 µM PCoA. The competitive inhibition by PCoA was localised to the phosphorylation apparatus, particularly the ADP/ATP carrier (AAC). During ischemia, the AAC imports ATP into the mitochondria, where it is hydrolysed by reversal of the ATP synthase, regenerating the membrane potential. Addition of PCoA dose‐dependently prevented this wasteful ATP hydrolysis for membrane repolarisation during ischemia, however, this beneficial effect was blunted in diabetic mitochondria. Finally, using 31P‐magnetic resonance spectroscopy we demonstrated that diabetic hearts lose ATP more rapidly during ischemia, with a threefold higher ATP decay rate compared with control hearts. In conclusion, PCoA plays a role in protecting mitochondrial energetics during ischemia, by preventing wasteful ATP hydrolysis. However, this beneficial effect is blunted in diabetes, contributing to the impaired energy metabolism seen during myocardial ischemia in the diabetic heart.</abstract><cop>United States</cop><pub>John Wiley and Sons Inc</pub><pmid>34318967</pmid><doi>10.1096/fj.202100394R</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0892-6638
ispartof The FASEB journal, 2021-08, Vol.35 (8), p.e21765-n/a
issn 0892-6638
1530-6860
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8662312
source Wiley-Blackwell Read & Publish Collection
subjects Adenosine Triphosphate - metabolism
Animals
Cell Respiration
diabetes
Diabetes Mellitus, Type 2 - metabolism
energetics
Energy Metabolism
fatty acids
heart
ischemia
Ischemia - metabolism
Ischemia - pathology
Male
mitochondria
Mitochondria, Heart - metabolism
Myocardium - metabolism
Myocardium - pathology
Oxygen Consumption
Palmitoyl Coenzyme A - pharmacology
Palmitoyl Coenzyme A - physiology
Rats
Rats, Wistar
title Diabetic mitochondria are resistant to palmitoyl CoA inhibition of respiration, which is detrimental during ischemia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A45%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diabetic%20mitochondria%20are%20resistant%20to%20palmitoyl%20CoA%20inhibition%20of%20respiration,%20which%20is%20detrimental%20during%20ischemia&rft.jtitle=The%20FASEB%20journal&rft.au=Kerr,%20M.&rft.date=2021-08&rft.volume=35&rft.issue=8&rft.spage=e21765&rft.epage=n/a&rft.pages=e21765-n/a&rft.issn=0892-6638&rft.eissn=1530-6860&rft_id=info:doi/10.1096/fj.202100394R&rft_dat=%3Cproquest_pubme%3E2555973196%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4765-ef62ce30caab107cd4b346b93b9e9365f4399af9826190aafac061ab1bcc47773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2555973196&rft_id=info:pmid/34318967&rfr_iscdi=true