Loading…
Diabetic mitochondria are resistant to palmitoyl CoA inhibition of respiration, which is detrimental during ischemia
The bioactive lipid intermediate palmitoyl CoA (PCoA) can inhibit mitochondrial ADP/ATP transport, though the physiological relevance of this regulation remains unclear. We questioned whether myocardial ischemia provides a pathological setting in which PCoA regulation of ADP/ATP transport would be b...
Saved in:
Published in: | The FASEB journal 2021-08, Vol.35 (8), p.e21765-n/a |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4765-ef62ce30caab107cd4b346b93b9e9365f4399af9826190aafac061ab1bcc47773 |
---|---|
cites | cdi_FETCH-LOGICAL-c4765-ef62ce30caab107cd4b346b93b9e9365f4399af9826190aafac061ab1bcc47773 |
container_end_page | n/a |
container_issue | 8 |
container_start_page | e21765 |
container_title | The FASEB journal |
container_volume | 35 |
creator | Kerr, M. Dennis, K. M. J. H. Carr, C. A. Fuller, W. Berridge, G. Rohling, S. Aitken, C. L. Lopez, C. Fischer, R. Miller, J. J. Clarke, K. Tyler, D. J. Heather, L. C. |
description | The bioactive lipid intermediate palmitoyl CoA (PCoA) can inhibit mitochondrial ADP/ATP transport, though the physiological relevance of this regulation remains unclear. We questioned whether myocardial ischemia provides a pathological setting in which PCoA regulation of ADP/ATP transport would be beneficial, and secondly, whether the chronically elevated lipid content within the diabetic heart could make mitochondria less sensitive to the effects of PCoA. PCoA acutely decreased ADP‐stimulated state 3 respiration and increased the apparent Km for ADP twofold. The half maximal inhibitory concentration (IC50) of PCoA in control mitochondria was 22 µM. This inhibitory effect of PCoA on respiration was blunted in diabetic mitochondria, with no significant difference in the Km for ADP in the presence of PCoA, and an increase in the IC50 to 32 µM PCoA. The competitive inhibition by PCoA was localised to the phosphorylation apparatus, particularly the ADP/ATP carrier (AAC). During ischemia, the AAC imports ATP into the mitochondria, where it is hydrolysed by reversal of the ATP synthase, regenerating the membrane potential. Addition of PCoA dose‐dependently prevented this wasteful ATP hydrolysis for membrane repolarisation during ischemia, however, this beneficial effect was blunted in diabetic mitochondria. Finally, using 31P‐magnetic resonance spectroscopy we demonstrated that diabetic hearts lose ATP more rapidly during ischemia, with a threefold higher ATP decay rate compared with control hearts. In conclusion, PCoA plays a role in protecting mitochondrial energetics during ischemia, by preventing wasteful ATP hydrolysis. However, this beneficial effect is blunted in diabetes, contributing to the impaired energy metabolism seen during myocardial ischemia in the diabetic heart. |
doi_str_mv | 10.1096/fj.202100394R |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8662312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555973196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4765-ef62ce30caab107cd4b346b93b9e9365f4399af9826190aafac061ab1bcc47773</originalsourceid><addsrcrecordid>eNp9kUtv1DAURi0EokNhyRZ5yYIUPxIn3iCVgUKlSpV4rK0bx27uKIkH20M1_x6PphS66cqyfXT8XX-EvObsjDOt3vvNmWCCMyZ1_e0JWfFGskp1ij0lK9ZpUSkluxPyIqUNY4wzrp6TE1lL3mnVrkj-hNC7jJbOmIMdwzJEBArR0egSpgxLpjnQLUwHYD_RdTinuIzYY8aw0OAP4BYjHLbv6O2IdqSY6OByxNktGSY67CIuN-XUjm5GeEmeeZiSe3W3npKfF59_rL9WV9dfLtfnV5WtW9VUzithnWQWoOestUPdy1r1WvbaaakaX0utwetOKK4ZgAfLFC9sb4ugbeUp-XD0bnf97AZbwkSYzLbkgrg3AdA8vFlwNDfht-mUEpKLInh7J4jh186lbOYyg5smWFzYJSOaptGt5FoVtDqiNoaUovP3z3BmDk0ZvzH_mir8m_-z3dN_qylAfQRucXL7x23m4vtHIXj5NPkH0B6iFg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555973196</pqid></control><display><type>article</type><title>Diabetic mitochondria are resistant to palmitoyl CoA inhibition of respiration, which is detrimental during ischemia</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Kerr, M. ; Dennis, K. M. J. H. ; Carr, C. A. ; Fuller, W. ; Berridge, G. ; Rohling, S. ; Aitken, C. L. ; Lopez, C. ; Fischer, R. ; Miller, J. J. ; Clarke, K. ; Tyler, D. J. ; Heather, L. C.</creator><creatorcontrib>Kerr, M. ; Dennis, K. M. J. H. ; Carr, C. A. ; Fuller, W. ; Berridge, G. ; Rohling, S. ; Aitken, C. L. ; Lopez, C. ; Fischer, R. ; Miller, J. J. ; Clarke, K. ; Tyler, D. J. ; Heather, L. C.</creatorcontrib><description>The bioactive lipid intermediate palmitoyl CoA (PCoA) can inhibit mitochondrial ADP/ATP transport, though the physiological relevance of this regulation remains unclear. We questioned whether myocardial ischemia provides a pathological setting in which PCoA regulation of ADP/ATP transport would be beneficial, and secondly, whether the chronically elevated lipid content within the diabetic heart could make mitochondria less sensitive to the effects of PCoA. PCoA acutely decreased ADP‐stimulated state 3 respiration and increased the apparent Km for ADP twofold. The half maximal inhibitory concentration (IC50) of PCoA in control mitochondria was 22 µM. This inhibitory effect of PCoA on respiration was blunted in diabetic mitochondria, with no significant difference in the Km for ADP in the presence of PCoA, and an increase in the IC50 to 32 µM PCoA. The competitive inhibition by PCoA was localised to the phosphorylation apparatus, particularly the ADP/ATP carrier (AAC). During ischemia, the AAC imports ATP into the mitochondria, where it is hydrolysed by reversal of the ATP synthase, regenerating the membrane potential. Addition of PCoA dose‐dependently prevented this wasteful ATP hydrolysis for membrane repolarisation during ischemia, however, this beneficial effect was blunted in diabetic mitochondria. Finally, using 31P‐magnetic resonance spectroscopy we demonstrated that diabetic hearts lose ATP more rapidly during ischemia, with a threefold higher ATP decay rate compared with control hearts. In conclusion, PCoA plays a role in protecting mitochondrial energetics during ischemia, by preventing wasteful ATP hydrolysis. However, this beneficial effect is blunted in diabetes, contributing to the impaired energy metabolism seen during myocardial ischemia in the diabetic heart.</description><identifier>ISSN: 0892-6638</identifier><identifier>EISSN: 1530-6860</identifier><identifier>DOI: 10.1096/fj.202100394R</identifier><identifier>PMID: 34318967</identifier><language>eng</language><publisher>United States: John Wiley and Sons Inc</publisher><subject>Adenosine Triphosphate - metabolism ; Animals ; Cell Respiration ; diabetes ; Diabetes Mellitus, Type 2 - metabolism ; energetics ; Energy Metabolism ; fatty acids ; heart ; ischemia ; Ischemia - metabolism ; Ischemia - pathology ; Male ; mitochondria ; Mitochondria, Heart - metabolism ; Myocardium - metabolism ; Myocardium - pathology ; Oxygen Consumption ; Palmitoyl Coenzyme A - pharmacology ; Palmitoyl Coenzyme A - physiology ; Rats ; Rats, Wistar</subject><ispartof>The FASEB journal, 2021-08, Vol.35 (8), p.e21765-n/a</ispartof><rights>2021 The Authors. published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology</rights><rights>2021 The Authors. The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4765-ef62ce30caab107cd4b346b93b9e9365f4399af9826190aafac061ab1bcc47773</citedby><cites>FETCH-LOGICAL-c4765-ef62ce30caab107cd4b346b93b9e9365f4399af9826190aafac061ab1bcc47773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34318967$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kerr, M.</creatorcontrib><creatorcontrib>Dennis, K. M. J. H.</creatorcontrib><creatorcontrib>Carr, C. A.</creatorcontrib><creatorcontrib>Fuller, W.</creatorcontrib><creatorcontrib>Berridge, G.</creatorcontrib><creatorcontrib>Rohling, S.</creatorcontrib><creatorcontrib>Aitken, C. L.</creatorcontrib><creatorcontrib>Lopez, C.</creatorcontrib><creatorcontrib>Fischer, R.</creatorcontrib><creatorcontrib>Miller, J. J.</creatorcontrib><creatorcontrib>Clarke, K.</creatorcontrib><creatorcontrib>Tyler, D. J.</creatorcontrib><creatorcontrib>Heather, L. C.</creatorcontrib><title>Diabetic mitochondria are resistant to palmitoyl CoA inhibition of respiration, which is detrimental during ischemia</title><title>The FASEB journal</title><addtitle>FASEB J</addtitle><description>The bioactive lipid intermediate palmitoyl CoA (PCoA) can inhibit mitochondrial ADP/ATP transport, though the physiological relevance of this regulation remains unclear. We questioned whether myocardial ischemia provides a pathological setting in which PCoA regulation of ADP/ATP transport would be beneficial, and secondly, whether the chronically elevated lipid content within the diabetic heart could make mitochondria less sensitive to the effects of PCoA. PCoA acutely decreased ADP‐stimulated state 3 respiration and increased the apparent Km for ADP twofold. The half maximal inhibitory concentration (IC50) of PCoA in control mitochondria was 22 µM. This inhibitory effect of PCoA on respiration was blunted in diabetic mitochondria, with no significant difference in the Km for ADP in the presence of PCoA, and an increase in the IC50 to 32 µM PCoA. The competitive inhibition by PCoA was localised to the phosphorylation apparatus, particularly the ADP/ATP carrier (AAC). During ischemia, the AAC imports ATP into the mitochondria, where it is hydrolysed by reversal of the ATP synthase, regenerating the membrane potential. Addition of PCoA dose‐dependently prevented this wasteful ATP hydrolysis for membrane repolarisation during ischemia, however, this beneficial effect was blunted in diabetic mitochondria. Finally, using 31P‐magnetic resonance spectroscopy we demonstrated that diabetic hearts lose ATP more rapidly during ischemia, with a threefold higher ATP decay rate compared with control hearts. In conclusion, PCoA plays a role in protecting mitochondrial energetics during ischemia, by preventing wasteful ATP hydrolysis. However, this beneficial effect is blunted in diabetes, contributing to the impaired energy metabolism seen during myocardial ischemia in the diabetic heart.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Cell Respiration</subject><subject>diabetes</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>energetics</subject><subject>Energy Metabolism</subject><subject>fatty acids</subject><subject>heart</subject><subject>ischemia</subject><subject>Ischemia - metabolism</subject><subject>Ischemia - pathology</subject><subject>Male</subject><subject>mitochondria</subject><subject>Mitochondria, Heart - metabolism</subject><subject>Myocardium - metabolism</subject><subject>Myocardium - pathology</subject><subject>Oxygen Consumption</subject><subject>Palmitoyl Coenzyme A - pharmacology</subject><subject>Palmitoyl Coenzyme A - physiology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><issn>0892-6638</issn><issn>1530-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kUtv1DAURi0EokNhyRZ5yYIUPxIn3iCVgUKlSpV4rK0bx27uKIkH20M1_x6PphS66cqyfXT8XX-EvObsjDOt3vvNmWCCMyZ1_e0JWfFGskp1ij0lK9ZpUSkluxPyIqUNY4wzrp6TE1lL3mnVrkj-hNC7jJbOmIMdwzJEBArR0egSpgxLpjnQLUwHYD_RdTinuIzYY8aw0OAP4BYjHLbv6O2IdqSY6OByxNktGSY67CIuN-XUjm5GeEmeeZiSe3W3npKfF59_rL9WV9dfLtfnV5WtW9VUzithnWQWoOestUPdy1r1WvbaaakaX0utwetOKK4ZgAfLFC9sb4ugbeUp-XD0bnf97AZbwkSYzLbkgrg3AdA8vFlwNDfht-mUEpKLInh7J4jh186lbOYyg5smWFzYJSOaptGt5FoVtDqiNoaUovP3z3BmDk0ZvzH_mir8m_-z3dN_qylAfQRucXL7x23m4vtHIXj5NPkH0B6iFg</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Kerr, M.</creator><creator>Dennis, K. M. J. H.</creator><creator>Carr, C. A.</creator><creator>Fuller, W.</creator><creator>Berridge, G.</creator><creator>Rohling, S.</creator><creator>Aitken, C. L.</creator><creator>Lopez, C.</creator><creator>Fischer, R.</creator><creator>Miller, J. J.</creator><creator>Clarke, K.</creator><creator>Tyler, D. J.</creator><creator>Heather, L. C.</creator><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202108</creationdate><title>Diabetic mitochondria are resistant to palmitoyl CoA inhibition of respiration, which is detrimental during ischemia</title><author>Kerr, M. ; Dennis, K. M. J. H. ; Carr, C. A. ; Fuller, W. ; Berridge, G. ; Rohling, S. ; Aitken, C. L. ; Lopez, C. ; Fischer, R. ; Miller, J. J. ; Clarke, K. ; Tyler, D. J. ; Heather, L. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4765-ef62ce30caab107cd4b346b93b9e9365f4399af9826190aafac061ab1bcc47773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Cell Respiration</topic><topic>diabetes</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>energetics</topic><topic>Energy Metabolism</topic><topic>fatty acids</topic><topic>heart</topic><topic>ischemia</topic><topic>Ischemia - metabolism</topic><topic>Ischemia - pathology</topic><topic>Male</topic><topic>mitochondria</topic><topic>Mitochondria, Heart - metabolism</topic><topic>Myocardium - metabolism</topic><topic>Myocardium - pathology</topic><topic>Oxygen Consumption</topic><topic>Palmitoyl Coenzyme A - pharmacology</topic><topic>Palmitoyl Coenzyme A - physiology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kerr, M.</creatorcontrib><creatorcontrib>Dennis, K. M. J. H.</creatorcontrib><creatorcontrib>Carr, C. A.</creatorcontrib><creatorcontrib>Fuller, W.</creatorcontrib><creatorcontrib>Berridge, G.</creatorcontrib><creatorcontrib>Rohling, S.</creatorcontrib><creatorcontrib>Aitken, C. L.</creatorcontrib><creatorcontrib>Lopez, C.</creatorcontrib><creatorcontrib>Fischer, R.</creatorcontrib><creatorcontrib>Miller, J. J.</creatorcontrib><creatorcontrib>Clarke, K.</creatorcontrib><creatorcontrib>Tyler, D. J.</creatorcontrib><creatorcontrib>Heather, L. C.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The FASEB journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kerr, M.</au><au>Dennis, K. M. J. H.</au><au>Carr, C. A.</au><au>Fuller, W.</au><au>Berridge, G.</au><au>Rohling, S.</au><au>Aitken, C. L.</au><au>Lopez, C.</au><au>Fischer, R.</au><au>Miller, J. J.</au><au>Clarke, K.</au><au>Tyler, D. J.</au><au>Heather, L. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diabetic mitochondria are resistant to palmitoyl CoA inhibition of respiration, which is detrimental during ischemia</atitle><jtitle>The FASEB journal</jtitle><addtitle>FASEB J</addtitle><date>2021-08</date><risdate>2021</risdate><volume>35</volume><issue>8</issue><spage>e21765</spage><epage>n/a</epage><pages>e21765-n/a</pages><issn>0892-6638</issn><eissn>1530-6860</eissn><abstract>The bioactive lipid intermediate palmitoyl CoA (PCoA) can inhibit mitochondrial ADP/ATP transport, though the physiological relevance of this regulation remains unclear. We questioned whether myocardial ischemia provides a pathological setting in which PCoA regulation of ADP/ATP transport would be beneficial, and secondly, whether the chronically elevated lipid content within the diabetic heart could make mitochondria less sensitive to the effects of PCoA. PCoA acutely decreased ADP‐stimulated state 3 respiration and increased the apparent Km for ADP twofold. The half maximal inhibitory concentration (IC50) of PCoA in control mitochondria was 22 µM. This inhibitory effect of PCoA on respiration was blunted in diabetic mitochondria, with no significant difference in the Km for ADP in the presence of PCoA, and an increase in the IC50 to 32 µM PCoA. The competitive inhibition by PCoA was localised to the phosphorylation apparatus, particularly the ADP/ATP carrier (AAC). During ischemia, the AAC imports ATP into the mitochondria, where it is hydrolysed by reversal of the ATP synthase, regenerating the membrane potential. Addition of PCoA dose‐dependently prevented this wasteful ATP hydrolysis for membrane repolarisation during ischemia, however, this beneficial effect was blunted in diabetic mitochondria. Finally, using 31P‐magnetic resonance spectroscopy we demonstrated that diabetic hearts lose ATP more rapidly during ischemia, with a threefold higher ATP decay rate compared with control hearts. In conclusion, PCoA plays a role in protecting mitochondrial energetics during ischemia, by preventing wasteful ATP hydrolysis. However, this beneficial effect is blunted in diabetes, contributing to the impaired energy metabolism seen during myocardial ischemia in the diabetic heart.</abstract><cop>United States</cop><pub>John Wiley and Sons Inc</pub><pmid>34318967</pmid><doi>10.1096/fj.202100394R</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0892-6638 |
ispartof | The FASEB journal, 2021-08, Vol.35 (8), p.e21765-n/a |
issn | 0892-6638 1530-6860 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8662312 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Adenosine Triphosphate - metabolism Animals Cell Respiration diabetes Diabetes Mellitus, Type 2 - metabolism energetics Energy Metabolism fatty acids heart ischemia Ischemia - metabolism Ischemia - pathology Male mitochondria Mitochondria, Heart - metabolism Myocardium - metabolism Myocardium - pathology Oxygen Consumption Palmitoyl Coenzyme A - pharmacology Palmitoyl Coenzyme A - physiology Rats Rats, Wistar |
title | Diabetic mitochondria are resistant to palmitoyl CoA inhibition of respiration, which is detrimental during ischemia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A45%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diabetic%20mitochondria%20are%20resistant%20to%20palmitoyl%20CoA%20inhibition%20of%20respiration,%20which%20is%20detrimental%20during%20ischemia&rft.jtitle=The%20FASEB%20journal&rft.au=Kerr,%20M.&rft.date=2021-08&rft.volume=35&rft.issue=8&rft.spage=e21765&rft.epage=n/a&rft.pages=e21765-n/a&rft.issn=0892-6638&rft.eissn=1530-6860&rft_id=info:doi/10.1096/fj.202100394R&rft_dat=%3Cproquest_pubme%3E2555973196%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4765-ef62ce30caab107cd4b346b93b9e9365f4399af9826190aafac061ab1bcc47773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2555973196&rft_id=info:pmid/34318967&rfr_iscdi=true |