Loading…

VDA-RWLRLS: An anti-SARS-CoV-2 drug prioritizing framework combining an unbalanced bi-random walk and Laplacian regularized least squares

A new coronavirus disease named COVID-19, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is rapidly spreading worldwide. However, there is currently no effective drug to fight COVID-19. In this study, we developed a Virus-Drug Association (VDA) identification framework (VDA-...

Full description

Saved in:
Bibliographic Details
Published in:Computers in biology and medicine 2022-01, Vol.140, p.105119-105119, Article 105119
Main Authors: Shen, Ling, Liu, Fuxing, Huang, Li, Liu, Guangyi, Zhou, Liqian, Peng, Lihong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c507t-5756cf5806fbb459b0b4be2e4f9aa3e65485bbe5033bc115b2d5b4f171317a903
cites cdi_FETCH-LOGICAL-c507t-5756cf5806fbb459b0b4be2e4f9aa3e65485bbe5033bc115b2d5b4f171317a903
container_end_page 105119
container_issue
container_start_page 105119
container_title Computers in biology and medicine
container_volume 140
creator Shen, Ling
Liu, Fuxing
Huang, Li
Liu, Guangyi
Zhou, Liqian
Peng, Lihong
description A new coronavirus disease named COVID-19, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is rapidly spreading worldwide. However, there is currently no effective drug to fight COVID-19. In this study, we developed a Virus-Drug Association (VDA) identification framework (VDA-RWLRLS) combining unbalanced bi-Random Walk, Laplacian Regularized Least Squares, molecular docking, and molecular dynamics simulation to find clues for the treatment of COVID-19. First, virus similarity and drug similarity are computed based on genomic sequences, chemical structures, and Gaussian association profiles. Second, an unbalanced bi-random walk is implemented on the virus network and the drug network, respectively. Third, the results of the random walks are taken as the input of Laplacian regularized least squares to compute the association score for each virus-drug pair. Fourth, the final associations are characterized by integrating the predictions from the virus network and the drug network. Finally, molecular docking and molecular dynamics simulation are implemented to measure the potential of screened anti-COVID-19 drugs and further validate the predicted results. In comparison with six state-of-the-art association prediction models (NGRHMDA, SMiR-NBI, LRLSHMDA, VDA-KATZ, VDA-RWR, and VDA-BiRW), VDA-RWLRLS demonstrates superior VDA prediction performance. It obtains the best AUCs of 0.885 8, 0.835 5, and 0.862 5 on the three VDA datasets. Molecular docking and dynamics simulations demonstrated that remdesivir and ribavirin may be potential anti-COVID-19 drugs. Integrating unbalanced bi-random walks, Laplacian regularized least squares, molecular docking, and molecular dynamics simulation, this work initially screened a few anti-SARS-CoV-2 drugs and may contribute to preventing COVID-19 transmission. •Developing a drug repositioning-based anti-SARS-CoV-2 drug screening framwork.•Unbalanced bi-random walk and Laplacian regularized least squares are designed to iteratively score for each virus-drug pair.•Molecular docking and molecular dynamics simulation are applied to validate the inferred anti-SARS-CoV-2 drugs.•Observing that remdesivir and ribavirin may be possible anti-SARS-CoV-2 drugs.
doi_str_mv 10.1016/j.compbiomed.2021.105119
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8664497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482521009136</els_id><sourcerecordid>2610074948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-5756cf5806fbb459b0b4be2e4f9aa3e65485bbe5033bc115b2d5b4f171317a903</originalsourceid><addsrcrecordid>eNqFkd1u1DAQhS0EokvhFZAlbrjxMk7s_HCBtCwUkCIh7UK5tGzHWbxN7K2dtGrfgLfG0Zbyc8OVpZlvjufMQQhTWFKgxav9UvvhoKwfTLvMIKOpzCmtH6AFrcqaAM_ZQ7QAoEBYlfET9CTGPQAwyOExOslZDVkB1QL9OH-3IptvzabZvsYrh6UbLdmuNluy9uckw22YdvgQrA92tLfW7XAX5GCufbjAaQdl3VyTDk9OyV46bVqsLAnStX7A17K_SM0WN_LQS20TF8xu6mWwtwnsjYwjjpeTDCY-RY862Ufz7O49RV_P3n9ZfyTN5w-f1quGaA7lSHjJC93xCopOKcZrBYopkxnW1VLmpuCs4koZDnmuNKVcZS1XrKMlzWkpa8hP0Zuj7mFS6XzauDHIXiSPgww3wksr_u44-13s_JWoioKxukwCL-8Egr-cTBzFYKM2fXJv_BRFVlCAktWsSuiLf9C9n4JL9maKs7Iucpqo6kjp4GMMprtfhoKY8xZ78TtvMectjnmn0ed_mrkf_BVwAt4eAZNOemVNEFFbM8dkg9GjaL39_y8_ARndwiY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615479631</pqid></control><display><type>article</type><title>VDA-RWLRLS: An anti-SARS-CoV-2 drug prioritizing framework combining an unbalanced bi-random walk and Laplacian regularized least squares</title><source>ScienceDirect Freedom Collection</source><creator>Shen, Ling ; Liu, Fuxing ; Huang, Li ; Liu, Guangyi ; Zhou, Liqian ; Peng, Lihong</creator><creatorcontrib>Shen, Ling ; Liu, Fuxing ; Huang, Li ; Liu, Guangyi ; Zhou, Liqian ; Peng, Lihong</creatorcontrib><description>A new coronavirus disease named COVID-19, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is rapidly spreading worldwide. However, there is currently no effective drug to fight COVID-19. In this study, we developed a Virus-Drug Association (VDA) identification framework (VDA-RWLRLS) combining unbalanced bi-Random Walk, Laplacian Regularized Least Squares, molecular docking, and molecular dynamics simulation to find clues for the treatment of COVID-19. First, virus similarity and drug similarity are computed based on genomic sequences, chemical structures, and Gaussian association profiles. Second, an unbalanced bi-random walk is implemented on the virus network and the drug network, respectively. Third, the results of the random walks are taken as the input of Laplacian regularized least squares to compute the association score for each virus-drug pair. Fourth, the final associations are characterized by integrating the predictions from the virus network and the drug network. Finally, molecular docking and molecular dynamics simulation are implemented to measure the potential of screened anti-COVID-19 drugs and further validate the predicted results. In comparison with six state-of-the-art association prediction models (NGRHMDA, SMiR-NBI, LRLSHMDA, VDA-KATZ, VDA-RWR, and VDA-BiRW), VDA-RWLRLS demonstrates superior VDA prediction performance. It obtains the best AUCs of 0.885 8, 0.835 5, and 0.862 5 on the three VDA datasets. Molecular docking and dynamics simulations demonstrated that remdesivir and ribavirin may be potential anti-COVID-19 drugs. Integrating unbalanced bi-random walks, Laplacian regularized least squares, molecular docking, and molecular dynamics simulation, this work initially screened a few anti-SARS-CoV-2 drugs and may contribute to preventing COVID-19 transmission. •Developing a drug repositioning-based anti-SARS-CoV-2 drug screening framwork.•Unbalanced bi-random walk and Laplacian regularized least squares are designed to iteratively score for each virus-drug pair.•Molecular docking and molecular dynamics simulation are applied to validate the inferred anti-SARS-CoV-2 drugs.•Observing that remdesivir and ribavirin may be possible anti-SARS-CoV-2 drugs.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2021.105119</identifier><identifier>PMID: 34902608</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Antiviral drug ; Antiviral drugs ; Bacterial infections ; Coronaviruses ; COVID-19 ; Datasets ; Drugs ; Laplacian regularized least squares ; Least squares ; Molecular docking ; Molecular dynamics ; Molecular dynamics simulation ; Prediction models ; Predictions ; R&amp;D ; Random walk ; Research &amp; development ; Ribavirin ; SARS-CoV-2 ; Severe acute respiratory syndrome ; Severe acute respiratory syndrome coronavirus 2 ; Similarity ; Simulation ; Unbalanced bi-random walk ; Viral diseases ; Virus-drug association ; Viruses</subject><ispartof>Computers in biology and medicine, 2022-01, Vol.140, p.105119-105119, Article 105119</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><rights>2021. Elsevier Ltd</rights><rights>2021 Elsevier Ltd. All rights reserved. 2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-5756cf5806fbb459b0b4be2e4f9aa3e65485bbe5033bc115b2d5b4f171317a903</citedby><cites>FETCH-LOGICAL-c507t-5756cf5806fbb459b0b4be2e4f9aa3e65485bbe5033bc115b2d5b4f171317a903</cites><orcidid>0000-0002-8975-5148 ; 0000-0002-2321-3901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34902608$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Ling</creatorcontrib><creatorcontrib>Liu, Fuxing</creatorcontrib><creatorcontrib>Huang, Li</creatorcontrib><creatorcontrib>Liu, Guangyi</creatorcontrib><creatorcontrib>Zhou, Liqian</creatorcontrib><creatorcontrib>Peng, Lihong</creatorcontrib><title>VDA-RWLRLS: An anti-SARS-CoV-2 drug prioritizing framework combining an unbalanced bi-random walk and Laplacian regularized least squares</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>A new coronavirus disease named COVID-19, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is rapidly spreading worldwide. However, there is currently no effective drug to fight COVID-19. In this study, we developed a Virus-Drug Association (VDA) identification framework (VDA-RWLRLS) combining unbalanced bi-Random Walk, Laplacian Regularized Least Squares, molecular docking, and molecular dynamics simulation to find clues for the treatment of COVID-19. First, virus similarity and drug similarity are computed based on genomic sequences, chemical structures, and Gaussian association profiles. Second, an unbalanced bi-random walk is implemented on the virus network and the drug network, respectively. Third, the results of the random walks are taken as the input of Laplacian regularized least squares to compute the association score for each virus-drug pair. Fourth, the final associations are characterized by integrating the predictions from the virus network and the drug network. Finally, molecular docking and molecular dynamics simulation are implemented to measure the potential of screened anti-COVID-19 drugs and further validate the predicted results. In comparison with six state-of-the-art association prediction models (NGRHMDA, SMiR-NBI, LRLSHMDA, VDA-KATZ, VDA-RWR, and VDA-BiRW), VDA-RWLRLS demonstrates superior VDA prediction performance. It obtains the best AUCs of 0.885 8, 0.835 5, and 0.862 5 on the three VDA datasets. Molecular docking and dynamics simulations demonstrated that remdesivir and ribavirin may be potential anti-COVID-19 drugs. Integrating unbalanced bi-random walks, Laplacian regularized least squares, molecular docking, and molecular dynamics simulation, this work initially screened a few anti-SARS-CoV-2 drugs and may contribute to preventing COVID-19 transmission. •Developing a drug repositioning-based anti-SARS-CoV-2 drug screening framwork.•Unbalanced bi-random walk and Laplacian regularized least squares are designed to iteratively score for each virus-drug pair.•Molecular docking and molecular dynamics simulation are applied to validate the inferred anti-SARS-CoV-2 drugs.•Observing that remdesivir and ribavirin may be possible anti-SARS-CoV-2 drugs.</description><subject>Antiviral drug</subject><subject>Antiviral drugs</subject><subject>Bacterial infections</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Datasets</subject><subject>Drugs</subject><subject>Laplacian regularized least squares</subject><subject>Least squares</subject><subject>Molecular docking</subject><subject>Molecular dynamics</subject><subject>Molecular dynamics simulation</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>R&amp;D</subject><subject>Random walk</subject><subject>Research &amp; development</subject><subject>Ribavirin</subject><subject>SARS-CoV-2</subject><subject>Severe acute respiratory syndrome</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Similarity</subject><subject>Simulation</subject><subject>Unbalanced bi-random walk</subject><subject>Viral diseases</subject><subject>Virus-drug association</subject><subject>Viruses</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkd1u1DAQhS0EokvhFZAlbrjxMk7s_HCBtCwUkCIh7UK5tGzHWbxN7K2dtGrfgLfG0Zbyc8OVpZlvjufMQQhTWFKgxav9UvvhoKwfTLvMIKOpzCmtH6AFrcqaAM_ZQ7QAoEBYlfET9CTGPQAwyOExOslZDVkB1QL9OH-3IptvzabZvsYrh6UbLdmuNluy9uckw22YdvgQrA92tLfW7XAX5GCufbjAaQdl3VyTDk9OyV46bVqsLAnStX7A17K_SM0WN_LQS20TF8xu6mWwtwnsjYwjjpeTDCY-RY862Ufz7O49RV_P3n9ZfyTN5w-f1quGaA7lSHjJC93xCopOKcZrBYopkxnW1VLmpuCs4koZDnmuNKVcZS1XrKMlzWkpa8hP0Zuj7mFS6XzauDHIXiSPgww3wksr_u44-13s_JWoioKxukwCL-8Egr-cTBzFYKM2fXJv_BRFVlCAktWsSuiLf9C9n4JL9maKs7Iucpqo6kjp4GMMprtfhoKY8xZ78TtvMectjnmn0ed_mrkf_BVwAt4eAZNOemVNEFFbM8dkg9GjaL39_y8_ARndwiY</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Shen, Ling</creator><creator>Liu, Fuxing</creator><creator>Huang, Li</creator><creator>Liu, Guangyi</creator><creator>Zhou, Liqian</creator><creator>Peng, Lihong</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8975-5148</orcidid><orcidid>https://orcid.org/0000-0002-2321-3901</orcidid></search><sort><creationdate>20220101</creationdate><title>VDA-RWLRLS: An anti-SARS-CoV-2 drug prioritizing framework combining an unbalanced bi-random walk and Laplacian regularized least squares</title><author>Shen, Ling ; Liu, Fuxing ; Huang, Li ; Liu, Guangyi ; Zhou, Liqian ; Peng, Lihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-5756cf5806fbb459b0b4be2e4f9aa3e65485bbe5033bc115b2d5b4f171317a903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antiviral drug</topic><topic>Antiviral drugs</topic><topic>Bacterial infections</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Datasets</topic><topic>Drugs</topic><topic>Laplacian regularized least squares</topic><topic>Least squares</topic><topic>Molecular docking</topic><topic>Molecular dynamics</topic><topic>Molecular dynamics simulation</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>R&amp;D</topic><topic>Random walk</topic><topic>Research &amp; development</topic><topic>Ribavirin</topic><topic>SARS-CoV-2</topic><topic>Severe acute respiratory syndrome</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Similarity</topic><topic>Simulation</topic><topic>Unbalanced bi-random walk</topic><topic>Viral diseases</topic><topic>Virus-drug association</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Ling</creatorcontrib><creatorcontrib>Liu, Fuxing</creatorcontrib><creatorcontrib>Huang, Li</creatorcontrib><creatorcontrib>Liu, Guangyi</creatorcontrib><creatorcontrib>Zhou, Liqian</creatorcontrib><creatorcontrib>Peng, Lihong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Biological Sciences</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Ling</au><au>Liu, Fuxing</au><au>Huang, Li</au><au>Liu, Guangyi</au><au>Zhou, Liqian</au><au>Peng, Lihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VDA-RWLRLS: An anti-SARS-CoV-2 drug prioritizing framework combining an unbalanced bi-random walk and Laplacian regularized least squares</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>140</volume><spage>105119</spage><epage>105119</epage><pages>105119-105119</pages><artnum>105119</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>A new coronavirus disease named COVID-19, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is rapidly spreading worldwide. However, there is currently no effective drug to fight COVID-19. In this study, we developed a Virus-Drug Association (VDA) identification framework (VDA-RWLRLS) combining unbalanced bi-Random Walk, Laplacian Regularized Least Squares, molecular docking, and molecular dynamics simulation to find clues for the treatment of COVID-19. First, virus similarity and drug similarity are computed based on genomic sequences, chemical structures, and Gaussian association profiles. Second, an unbalanced bi-random walk is implemented on the virus network and the drug network, respectively. Third, the results of the random walks are taken as the input of Laplacian regularized least squares to compute the association score for each virus-drug pair. Fourth, the final associations are characterized by integrating the predictions from the virus network and the drug network. Finally, molecular docking and molecular dynamics simulation are implemented to measure the potential of screened anti-COVID-19 drugs and further validate the predicted results. In comparison with six state-of-the-art association prediction models (NGRHMDA, SMiR-NBI, LRLSHMDA, VDA-KATZ, VDA-RWR, and VDA-BiRW), VDA-RWLRLS demonstrates superior VDA prediction performance. It obtains the best AUCs of 0.885 8, 0.835 5, and 0.862 5 on the three VDA datasets. Molecular docking and dynamics simulations demonstrated that remdesivir and ribavirin may be potential anti-COVID-19 drugs. Integrating unbalanced bi-random walks, Laplacian regularized least squares, molecular docking, and molecular dynamics simulation, this work initially screened a few anti-SARS-CoV-2 drugs and may contribute to preventing COVID-19 transmission. •Developing a drug repositioning-based anti-SARS-CoV-2 drug screening framwork.•Unbalanced bi-random walk and Laplacian regularized least squares are designed to iteratively score for each virus-drug pair.•Molecular docking and molecular dynamics simulation are applied to validate the inferred anti-SARS-CoV-2 drugs.•Observing that remdesivir and ribavirin may be possible anti-SARS-CoV-2 drugs.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>34902608</pmid><doi>10.1016/j.compbiomed.2021.105119</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8975-5148</orcidid><orcidid>https://orcid.org/0000-0002-2321-3901</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2022-01, Vol.140, p.105119-105119, Article 105119
issn 0010-4825
1879-0534
1879-0534
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8664497
source ScienceDirect Freedom Collection
subjects Antiviral drug
Antiviral drugs
Bacterial infections
Coronaviruses
COVID-19
Datasets
Drugs
Laplacian regularized least squares
Least squares
Molecular docking
Molecular dynamics
Molecular dynamics simulation
Prediction models
Predictions
R&D
Random walk
Research & development
Ribavirin
SARS-CoV-2
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Similarity
Simulation
Unbalanced bi-random walk
Viral diseases
Virus-drug association
Viruses
title VDA-RWLRLS: An anti-SARS-CoV-2 drug prioritizing framework combining an unbalanced bi-random walk and Laplacian regularized least squares
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A20%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VDA-RWLRLS:%20An%20anti-SARS-CoV-2%20drug%20prioritizing%20framework%20combining%20an%20unbalanced%20bi-random%20walk%20and%20Laplacian%20regularized%20least%20squares&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Shen,%20Ling&rft.date=2022-01-01&rft.volume=140&rft.spage=105119&rft.epage=105119&rft.pages=105119-105119&rft.artnum=105119&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2021.105119&rft_dat=%3Cproquest_pubme%3E2610074948%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c507t-5756cf5806fbb459b0b4be2e4f9aa3e65485bbe5033bc115b2d5b4f171317a903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2615479631&rft_id=info:pmid/34902608&rfr_iscdi=true