Loading…

Mg2+-dependent conformational rearrangements of CRISPR-Cas12a R-loop complex are mandatory for complete double-stranded DNA cleavage

CRISPR-Cas12a, an RNA-guided DNA targeting endonuclease, has been widely used for genome editing and nucleic acid detection. As part of the essential processes for both of these applications, the two strands of double-stranded DNA are sequentially cleaved by a single catalytic site of Cas12a, but th...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2021-12, Vol.118 (49), p.1-8
Main Authors: Son, Heyjin, Park, Jaeil, Hwang, Injoo, Jung, Youngri, Bae, Sangsu, Lee, Sanghwa
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8
container_issue 49
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Son, Heyjin
Park, Jaeil
Hwang, Injoo
Jung, Youngri
Bae, Sangsu
Lee, Sanghwa
description CRISPR-Cas12a, an RNA-guided DNA targeting endonuclease, has been widely used for genome editing and nucleic acid detection. As part of the essential processes for both of these applications, the two strands of double-stranded DNA are sequentially cleaved by a single catalytic site of Cas12a, but the mechanistic details that govern the generation of complete breaks in double-stranded DNA remain to be elucidated. Here, using single-molecule fluorescence resonance energy transfer assay, we identified two conformational intermediates that form consecutively following the initial cleavage of the nontarget strand. Specifically, these two intermediates are the result of further unwinding of the target DNA in the protospacer-adjacent motif (PAM)–distal region and the subsequent binding of the target strand to the catalytic site. Notably, the PAM-distal DNA unwound conformation was stabilized by Mg2+ ions, thereby significantly promoting the binding and cleavage of the target strand. These findings enabled us to propose a Mg2+-dependent kinetic model for the mechanism whereby Cas12a achieves cleavage of the target DNA, highlighting the presence of conformational rearrangements for the complete cleavage of the double-stranded DNA target.
doi_str_mv 10.1073/pnas.2113747118
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8670479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27094158</jstor_id><sourcerecordid>27094158</sourcerecordid><originalsourceid>FETCH-LOGICAL-j264t-5e0005aa8d6e3ae3744977b869d530c59c5647fdb4b3bd42d5616ced381c5c253</originalsourceid><addsrcrecordid>eNpVkEtrFEEUhYsQSSbRdVaBgiylYr0fm0AYNQbig1HXze2uO5MZurvaqp5g9v5wCzIIru7iO_eDcwi5EPxacKfeTSOUaymEctoJ4Y_IQvAgmNWBH5MF59Ixr6U-JWel7DjnwXh-Qk6V9kYJJxfkz-eNfMsiTjhGHGfapXGd8gDzNo3Q04yQM4wbHCosNK3pcnX__duKLaEICXTF-pSm-jVMPf6mkJEOMEaYU36mVXQgM9KY9m2PrMxVFzHS919uadcjPMEGX5NXa-gLvjncc_Lz44cfy0_s4evd_fL2ge2k1TMzWBsYAB8tKsDaWQfnWm9DNIp3JnTGareOrW5VG7WMxgrbYVRedKaTRp2TmxfvtG8HjF3tlKFvprwdID83CbbN_2TcPjab9NR467h2oQquDoKcfu2xzM0u7XMdqjTSch-EMsrX1OVLalfqDv_00vGghfHqL1GRhjc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608913538</pqid></control><display><type>article</type><title>Mg2+-dependent conformational rearrangements of CRISPR-Cas12a R-loop complex are mandatory for complete double-stranded DNA cleavage</title><source>PubMed Central</source><source>JSTOR Journals and Primary Sources</source><creator>Son, Heyjin ; Park, Jaeil ; Hwang, Injoo ; Jung, Youngri ; Bae, Sangsu ; Lee, Sanghwa</creator><creatorcontrib>Son, Heyjin ; Park, Jaeil ; Hwang, Injoo ; Jung, Youngri ; Bae, Sangsu ; Lee, Sanghwa</creatorcontrib><description>CRISPR-Cas12a, an RNA-guided DNA targeting endonuclease, has been widely used for genome editing and nucleic acid detection. As part of the essential processes for both of these applications, the two strands of double-stranded DNA are sequentially cleaved by a single catalytic site of Cas12a, but the mechanistic details that govern the generation of complete breaks in double-stranded DNA remain to be elucidated. Here, using single-molecule fluorescence resonance energy transfer assay, we identified two conformational intermediates that form consecutively following the initial cleavage of the nontarget strand. Specifically, these two intermediates are the result of further unwinding of the target DNA in the protospacer-adjacent motif (PAM)–distal region and the subsequent binding of the target strand to the catalytic site. Notably, the PAM-distal DNA unwound conformation was stabilized by Mg2+ ions, thereby significantly promoting the binding and cleavage of the target strand. These findings enabled us to propose a Mg2+-dependent kinetic model for the mechanism whereby Cas12a achieves cleavage of the target DNA, highlighting the presence of conformational rearrangements for the complete cleavage of the double-stranded DNA target.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2113747118</identifier><identifier>PMID: 34853172</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Binding ; Biological Sciences ; Cleavage ; Conformation ; CRISPR ; Deoxyribonucleic acid ; DNA ; DNA damage ; Endonuclease ; Energy transfer ; Fluorescence ; Fluorescence resonance energy transfer ; Genomes ; Intermediates ; Magnesium ; Nucleic acids ; Unwinding</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-12, Vol.118 (49), p.1-8</ispartof><rights>Copyright National Academy of Sciences Dec 7, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27094158$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27094158$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772,58217,58450</link.rule.ids></links><search><creatorcontrib>Son, Heyjin</creatorcontrib><creatorcontrib>Park, Jaeil</creatorcontrib><creatorcontrib>Hwang, Injoo</creatorcontrib><creatorcontrib>Jung, Youngri</creatorcontrib><creatorcontrib>Bae, Sangsu</creatorcontrib><creatorcontrib>Lee, Sanghwa</creatorcontrib><title>Mg2+-dependent conformational rearrangements of CRISPR-Cas12a R-loop complex are mandatory for complete double-stranded DNA cleavage</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>CRISPR-Cas12a, an RNA-guided DNA targeting endonuclease, has been widely used for genome editing and nucleic acid detection. As part of the essential processes for both of these applications, the two strands of double-stranded DNA are sequentially cleaved by a single catalytic site of Cas12a, but the mechanistic details that govern the generation of complete breaks in double-stranded DNA remain to be elucidated. Here, using single-molecule fluorescence resonance energy transfer assay, we identified two conformational intermediates that form consecutively following the initial cleavage of the nontarget strand. Specifically, these two intermediates are the result of further unwinding of the target DNA in the protospacer-adjacent motif (PAM)–distal region and the subsequent binding of the target strand to the catalytic site. Notably, the PAM-distal DNA unwound conformation was stabilized by Mg2+ ions, thereby significantly promoting the binding and cleavage of the target strand. These findings enabled us to propose a Mg2+-dependent kinetic model for the mechanism whereby Cas12a achieves cleavage of the target DNA, highlighting the presence of conformational rearrangements for the complete cleavage of the double-stranded DNA target.</description><subject>Binding</subject><subject>Biological Sciences</subject><subject>Cleavage</subject><subject>Conformation</subject><subject>CRISPR</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>Endonuclease</subject><subject>Energy transfer</subject><subject>Fluorescence</subject><subject>Fluorescence resonance energy transfer</subject><subject>Genomes</subject><subject>Intermediates</subject><subject>Magnesium</subject><subject>Nucleic acids</subject><subject>Unwinding</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkEtrFEEUhYsQSSbRdVaBgiylYr0fm0AYNQbig1HXze2uO5MZurvaqp5g9v5wCzIIru7iO_eDcwi5EPxacKfeTSOUaymEctoJ4Y_IQvAgmNWBH5MF59Ixr6U-JWel7DjnwXh-Qk6V9kYJJxfkz-eNfMsiTjhGHGfapXGd8gDzNo3Q04yQM4wbHCosNK3pcnX__duKLaEICXTF-pSm-jVMPf6mkJEOMEaYU36mVXQgM9KY9m2PrMxVFzHS919uadcjPMEGX5NXa-gLvjncc_Lz44cfy0_s4evd_fL2ge2k1TMzWBsYAB8tKsDaWQfnWm9DNIp3JnTGareOrW5VG7WMxgrbYVRedKaTRp2TmxfvtG8HjF3tlKFvprwdID83CbbN_2TcPjab9NR467h2oQquDoKcfu2xzM0u7XMdqjTSch-EMsrX1OVLalfqDv_00vGghfHqL1GRhjc</recordid><startdate>20211207</startdate><enddate>20211207</enddate><creator>Son, Heyjin</creator><creator>Park, Jaeil</creator><creator>Hwang, Injoo</creator><creator>Jung, Youngri</creator><creator>Bae, Sangsu</creator><creator>Lee, Sanghwa</creator><general>National Academy of Sciences</general><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20211207</creationdate><title>Mg2+-dependent conformational rearrangements of CRISPR-Cas12a R-loop complex are mandatory for complete double-stranded DNA cleavage</title><author>Son, Heyjin ; Park, Jaeil ; Hwang, Injoo ; Jung, Youngri ; Bae, Sangsu ; Lee, Sanghwa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j264t-5e0005aa8d6e3ae3744977b869d530c59c5647fdb4b3bd42d5616ced381c5c253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Binding</topic><topic>Biological Sciences</topic><topic>Cleavage</topic><topic>Conformation</topic><topic>CRISPR</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>Endonuclease</topic><topic>Energy transfer</topic><topic>Fluorescence</topic><topic>Fluorescence resonance energy transfer</topic><topic>Genomes</topic><topic>Intermediates</topic><topic>Magnesium</topic><topic>Nucleic acids</topic><topic>Unwinding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Son, Heyjin</creatorcontrib><creatorcontrib>Park, Jaeil</creatorcontrib><creatorcontrib>Hwang, Injoo</creatorcontrib><creatorcontrib>Jung, Youngri</creatorcontrib><creatorcontrib>Bae, Sangsu</creatorcontrib><creatorcontrib>Lee, Sanghwa</creatorcontrib><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Son, Heyjin</au><au>Park, Jaeil</au><au>Hwang, Injoo</au><au>Jung, Youngri</au><au>Bae, Sangsu</au><au>Lee, Sanghwa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mg2+-dependent conformational rearrangements of CRISPR-Cas12a R-loop complex are mandatory for complete double-stranded DNA cleavage</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2021-12-07</date><risdate>2021</risdate><volume>118</volume><issue>49</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>CRISPR-Cas12a, an RNA-guided DNA targeting endonuclease, has been widely used for genome editing and nucleic acid detection. As part of the essential processes for both of these applications, the two strands of double-stranded DNA are sequentially cleaved by a single catalytic site of Cas12a, but the mechanistic details that govern the generation of complete breaks in double-stranded DNA remain to be elucidated. Here, using single-molecule fluorescence resonance energy transfer assay, we identified two conformational intermediates that form consecutively following the initial cleavage of the nontarget strand. Specifically, these two intermediates are the result of further unwinding of the target DNA in the protospacer-adjacent motif (PAM)–distal region and the subsequent binding of the target strand to the catalytic site. Notably, the PAM-distal DNA unwound conformation was stabilized by Mg2+ ions, thereby significantly promoting the binding and cleavage of the target strand. These findings enabled us to propose a Mg2+-dependent kinetic model for the mechanism whereby Cas12a achieves cleavage of the target DNA, highlighting the presence of conformational rearrangements for the complete cleavage of the double-stranded DNA target.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><pmid>34853172</pmid><doi>10.1073/pnas.2113747118</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-12, Vol.118 (49), p.1-8
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8670479
source PubMed Central; JSTOR Journals and Primary Sources
subjects Binding
Biological Sciences
Cleavage
Conformation
CRISPR
Deoxyribonucleic acid
DNA
DNA damage
Endonuclease
Energy transfer
Fluorescence
Fluorescence resonance energy transfer
Genomes
Intermediates
Magnesium
Nucleic acids
Unwinding
title Mg2+-dependent conformational rearrangements of CRISPR-Cas12a R-loop complex are mandatory for complete double-stranded DNA cleavage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A36%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mg2+-dependent%20conformational%20rearrangements%20of%20CRISPR-Cas12a%20R-loop%20complex%20are%20mandatory%20for%20complete%20double-stranded%20DNA%20cleavage&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Son,%20Heyjin&rft.date=2021-12-07&rft.volume=118&rft.issue=49&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2113747118&rft_dat=%3Cjstor_pubme%3E27094158%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j264t-5e0005aa8d6e3ae3744977b869d530c59c5647fdb4b3bd42d5616ced381c5c253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2608913538&rft_id=info:pmid/34853172&rft_jstor_id=27094158&rfr_iscdi=true