Loading…
Designing an immunoinformatic vaccine for peri-implantitis using a structural biology approach
Peri-implantitis is a destructive inflammatory process that affects the soft and hard tissues around dental implants. porphyromonas gingivalis, an anaerobic gram-negative bacterium, appears to be the main culprit. Since there is no efficient and specific vaccine to treat peri-implantitis, the goal o...
Saved in:
Published in: | Saudi journal of biological sciences 2022-01, Vol.29 (1), p.622-629 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Peri-implantitis is a destructive inflammatory process that affects the soft and hard tissues around dental implants. porphyromonas gingivalis, an anaerobic gram-negative bacterium, appears to be the main culprit. Since there is no efficient and specific vaccine to treat peri-implantitis, the goal of our research has been to develop a multi-epitope vaccination utilizing an immunoinformatics approach that targeted P. gingivalis type I fim A.
P. gingivalis peptides 6JKZ and 6KMF are suitable for vaccine development. B- and T-cell epitopes from 6KMF and 6JKZ were detected and evaluated based on critical factors to produce a multi-epitope vaccine construct. It was assessed based on allergenicity, antigenicity, stability. The vaccine's dual major histocompatibility complex (MHC-I and MHC-II) binding epitopes allowed it to reach a larger population. P. gingivalis fimbriae induce immune subversion through TLR -CXCR4 receptor complex pathway. The ClusPro 2.0 server was used to do the molecular docking using TLR2 - CXCR4 and vaccine epitopes as receptor and ligand respectively.
The designed vaccine was non-allergenic and had a high antigenicity, solubility, and stability. The 3D structure of the vaccine revealed strong interaction with CXCR4(TLR2) using molecular docking. The vaccine-CXCR4 interface was more consistent, possibly because the vaccination has a higher affinity for the CXCR4-TLR2 complex.
This study details the vaccine's distinct and sustained interaction with the CXCR4(TLR2) immunological receptor and its consistent and effective utterance in the bacterial system. As a result, our vaccine formulation will evoke a significant memory response and induce an adaptive immune response against P. gingivalis. |
---|---|
ISSN: | 1319-562X 2213-7106 |
DOI: | 10.1016/j.sjbs.2021.09.041 |