Loading…

Cigarette Smoke Exposure Inhibits Osteoclast Apoptosis via the mtROS Pathway

It is widely known that smoking is a risk factor for bone loss and plays a key role in osteopenia. Despite this well-known association, the mechanisms by which smoking affects bone have not been definitively established. Since smoking increases bone loss and potentially affects bone resorption in re...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dental research 2021-11, Vol.100 (12), p.1378-1386
Main Authors: Qin, Y., Liu, Y., Jiang, Y., Mei, S., Feng, J., Guo, L., Du, J., Graves, D.T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is widely known that smoking is a risk factor for bone loss and plays a key role in osteopenia. Despite this well-known association, the mechanisms by which smoking affects bone have not been definitively established. Since smoking increases bone loss and potentially affects bone resorption in response to mechanical force, we investigated the impact of cigarette smoke on osteoclast numbers and underlying mechanisms in a mouse model of orthodontic tooth movement (OTM). The experimental group was exposed to once-daily cigarette smoke while the control group was not, and tooth movement distance and osteoclast numbers were assessed. In addition, the effect of cigarette smoke extract (CSE) on osteoclast precursor proliferation and osteoclast apoptosis was assessed in vitro. We found that cigarette smoke exposure enhanced bone remodeling stimulated by mechanical force and increased osteoclast numbers in vivo. Also, CSE increased the number of osteoclasts by inhibiting osteoclast apoptosis via the mitochondrial reactive oxygen species/cytochrome C/caspase 3 pathway in vitro. Moreover, exposure of mice to cigarette smoke affected bone marrow cells, leading to increased formation of osteoclasts in vitro. This study identifies a previously unknown mechanism of how smoking has a detrimental impact on bone.
ISSN:0022-0345
1544-0591
DOI:10.1177/00220345211009471