Loading…
Nuclear UHRF1 is a gate-keeper of cellular AMPK activity and function
The AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis. Although much has been learned on how low energy status and glucose starvation activate AMPK, how AMPK activity is properly controlled in vivo is still poorly understood. Here we report that UHRF1, an epigenetic re...
Saved in:
Published in: | Cell research 2022-01, Vol.32 (1), p.54-71 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-d953ece060e4a67879d8b7c72d9f5a8dbd28ea594e25585b0400f069b92b73153 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-d953ece060e4a67879d8b7c72d9f5a8dbd28ea594e25585b0400f069b92b73153 |
container_end_page | 71 |
container_issue | 1 |
container_start_page | 54 |
container_title | Cell research |
container_volume | 32 |
creator | Xu, Xiang Ding, Guangjin Liu, Caizhi Ding, Yuhan Chen, Xiaoxin Huang, Xiaoli Zhang, Chen-Song Lu, Shanxin Zhang, Yunpeng Huang, Yuanyong Chen, Zhaosu Wei, Wei Liao, Lujian Lin, Shu-Hai Li, Jingya Liu, Wei Li, Jiwen Lin, Sheng-Cai Ma, Xinran Wong, Jiemin |
description | The AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis. Although much has been learned on how low energy status and glucose starvation activate AMPK, how AMPK activity is properly controlled in vivo is still poorly understood. Here we report that UHRF1, an epigenetic regulator highly expressed in proliferating and cancer cells, interacts with AMPK and serves to suppress AMPK activity under both basal and stressed conditions. As a nuclear protein, UHRF1 promotes AMPK nuclear retention and strongly suppresses nuclear AMPK activity toward substrates H2B and EZH2. Importantly, we demonstrate that UHRF1 also robustly inhibits AMPK activity in the cytoplasm compartment, most likely as a consequence of AMPK nucleocytoplasmic shuttling. Mechanistically, we found that UHRF1 has no obvious effect on AMPK activation by upstream kinases LKB1 and CAMKK2 but inhibits AMPK activity by acting as a bridging factor targeting phosphatase PP2A to dephosphorylate AMPK. Hepatic overexpression of UHRF1 showed profound effects on glucose and lipid metabolism in wild-type mice but not in those with the liver-specific knockout of AMPKα1/α2, whereas knockdown of UHRF1 in adipose tissue led to AMPK activation and reduced sizes of adipocytes and lipogenic activity, highlighting the physiological significance of this regulation in glucose and lipid metabolism. Thus, our study identifies UHRF1 as a novel AMPK gate-keeper with critical roles in cellular metabolism. |
doi_str_mv | 10.1038/s41422-021-00565-y |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8724286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576656315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-d953ece060e4a67879d8b7c72d9f5a8dbd28ea594e25585b0400f069b92b73153</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxa2qVYGlX4ADstRLL4Hxf-eChBB0EZQiBGfLSSZLaDbZ2gnSfvt6GwqUAyfbmt-8medHyB6DAwbCHkbJJOcZcJYBKK2y9QeyzYy0mbHCfkx3gFTSwLfITowPAFxJxT6TLSGVZprl2-T0aixb9IHezW_OGG0i9XThB8x-Ia4w0L6mJbbt2Cbk-Mf1BfXl0Dw2w5r6rqL12KVn3-2ST7VvI355Omfk7uz09mSeXf78fn5yfJmVSsKQVbkSWGLaCKXXxpq8soUpDa_yWnlbFRW36FUukStlVQESoAadFzkvjGBKzMjRpLsaiyVWJXZD8K1bhWbpw9r1vnH_V7rm3i36R2cNl9zqJPDtSSD0v0eMg1s2cWPQd9iP0XFltFZ6mvX1DfrQj6FL9hzffJ4QVkOi-ESVoY8xYP28DAO3SclNKbmUkvubklunpv3XNp5b_sWSADEBMZW6BYaX2e_I_gG4s5w1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616133860</pqid></control><display><type>article</type><title>Nuclear UHRF1 is a gate-keeper of cellular AMPK activity and function</title><source>PubMed (Medline)</source><source>Springer Link</source><creator>Xu, Xiang ; Ding, Guangjin ; Liu, Caizhi ; Ding, Yuhan ; Chen, Xiaoxin ; Huang, Xiaoli ; Zhang, Chen-Song ; Lu, Shanxin ; Zhang, Yunpeng ; Huang, Yuanyong ; Chen, Zhaosu ; Wei, Wei ; Liao, Lujian ; Lin, Shu-Hai ; Li, Jingya ; Liu, Wei ; Li, Jiwen ; Lin, Sheng-Cai ; Ma, Xinran ; Wong, Jiemin</creator><creatorcontrib>Xu, Xiang ; Ding, Guangjin ; Liu, Caizhi ; Ding, Yuhan ; Chen, Xiaoxin ; Huang, Xiaoli ; Zhang, Chen-Song ; Lu, Shanxin ; Zhang, Yunpeng ; Huang, Yuanyong ; Chen, Zhaosu ; Wei, Wei ; Liao, Lujian ; Lin, Shu-Hai ; Li, Jingya ; Liu, Wei ; Li, Jiwen ; Lin, Sheng-Cai ; Ma, Xinran ; Wong, Jiemin</creatorcontrib><description>The AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis. Although much has been learned on how low energy status and glucose starvation activate AMPK, how AMPK activity is properly controlled in vivo is still poorly understood. Here we report that UHRF1, an epigenetic regulator highly expressed in proliferating and cancer cells, interacts with AMPK and serves to suppress AMPK activity under both basal and stressed conditions. As a nuclear protein, UHRF1 promotes AMPK nuclear retention and strongly suppresses nuclear AMPK activity toward substrates H2B and EZH2. Importantly, we demonstrate that UHRF1 also robustly inhibits AMPK activity in the cytoplasm compartment, most likely as a consequence of AMPK nucleocytoplasmic shuttling. Mechanistically, we found that UHRF1 has no obvious effect on AMPK activation by upstream kinases LKB1 and CAMKK2 but inhibits AMPK activity by acting as a bridging factor targeting phosphatase PP2A to dephosphorylate AMPK. Hepatic overexpression of UHRF1 showed profound effects on glucose and lipid metabolism in wild-type mice but not in those with the liver-specific knockout of AMPKα1/α2, whereas knockdown of UHRF1 in adipose tissue led to AMPK activation and reduced sizes of adipocytes and lipogenic activity, highlighting the physiological significance of this regulation in glucose and lipid metabolism. Thus, our study identifies UHRF1 as a novel AMPK gate-keeper with critical roles in cellular metabolism.</description><identifier>ISSN: 1001-0602</identifier><identifier>EISSN: 1748-7838</identifier><identifier>DOI: 10.1038/s41422-021-00565-y</identifier><identifier>PMID: 34561619</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>101/58 ; 13/1 ; 13/89 ; 45/29 ; 45/77 ; 631/80/458/1733 ; 631/80/86/2369 ; 64/110 ; 64/60 ; 82/16 ; 82/51 ; 82/83 ; 96/1 ; 96/109 ; 96/33 ; Adipocytes ; Adipose tissue ; AMP-activated protein kinase ; AMP-Activated Protein Kinases - genetics ; AMP-Activated Protein Kinases - metabolism ; Animals ; Biomedical and Life Sciences ; CCAAT-Enhancer-Binding Proteins - genetics ; Cell Biology ; Cytoplasm ; Energy balance ; Epigenetics ; Glucose ; Glucose metabolism ; Homeostasis ; Kinases ; Life Sciences ; Lipid metabolism ; Lipids ; LKB1 protein ; Metabolism ; Mice ; Phosphates ; Phosphorylation ; Protein Processing, Post-Translational ; Proteins ; Substrates ; Ubiquitin-Protein Ligases - genetics</subject><ispartof>Cell research, 2022-01, Vol.32 (1), p.54-71</ispartof><rights>The Author(s), under exclusive licence to Center for Excellence in Molecular Cell Science, CAS 2021</rights><rights>2021. The Author(s), under exclusive licence to Center for Excellence in Molecular Cell Science, CAS.</rights><rights>The Author(s), under exclusive licence to Center for Excellence in Molecular Cell Science, CAS 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-d953ece060e4a67879d8b7c72d9f5a8dbd28ea594e25585b0400f069b92b73153</citedby><cites>FETCH-LOGICAL-c540t-d953ece060e4a67879d8b7c72d9f5a8dbd28ea594e25585b0400f069b92b73153</cites><orcidid>0000-0002-5311-842X ; 0000-0001-5144-3803 ; 0000-0003-1993-8376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8724286/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8724286/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34561619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Xiang</creatorcontrib><creatorcontrib>Ding, Guangjin</creatorcontrib><creatorcontrib>Liu, Caizhi</creatorcontrib><creatorcontrib>Ding, Yuhan</creatorcontrib><creatorcontrib>Chen, Xiaoxin</creatorcontrib><creatorcontrib>Huang, Xiaoli</creatorcontrib><creatorcontrib>Zhang, Chen-Song</creatorcontrib><creatorcontrib>Lu, Shanxin</creatorcontrib><creatorcontrib>Zhang, Yunpeng</creatorcontrib><creatorcontrib>Huang, Yuanyong</creatorcontrib><creatorcontrib>Chen, Zhaosu</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Liao, Lujian</creatorcontrib><creatorcontrib>Lin, Shu-Hai</creatorcontrib><creatorcontrib>Li, Jingya</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Li, Jiwen</creatorcontrib><creatorcontrib>Lin, Sheng-Cai</creatorcontrib><creatorcontrib>Ma, Xinran</creatorcontrib><creatorcontrib>Wong, Jiemin</creatorcontrib><title>Nuclear UHRF1 is a gate-keeper of cellular AMPK activity and function</title><title>Cell research</title><addtitle>Cell Res</addtitle><addtitle>Cell Res</addtitle><description>The AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis. Although much has been learned on how low energy status and glucose starvation activate AMPK, how AMPK activity is properly controlled in vivo is still poorly understood. Here we report that UHRF1, an epigenetic regulator highly expressed in proliferating and cancer cells, interacts with AMPK and serves to suppress AMPK activity under both basal and stressed conditions. As a nuclear protein, UHRF1 promotes AMPK nuclear retention and strongly suppresses nuclear AMPK activity toward substrates H2B and EZH2. Importantly, we demonstrate that UHRF1 also robustly inhibits AMPK activity in the cytoplasm compartment, most likely as a consequence of AMPK nucleocytoplasmic shuttling. Mechanistically, we found that UHRF1 has no obvious effect on AMPK activation by upstream kinases LKB1 and CAMKK2 but inhibits AMPK activity by acting as a bridging factor targeting phosphatase PP2A to dephosphorylate AMPK. Hepatic overexpression of UHRF1 showed profound effects on glucose and lipid metabolism in wild-type mice but not in those with the liver-specific knockout of AMPKα1/α2, whereas knockdown of UHRF1 in adipose tissue led to AMPK activation and reduced sizes of adipocytes and lipogenic activity, highlighting the physiological significance of this regulation in glucose and lipid metabolism. Thus, our study identifies UHRF1 as a novel AMPK gate-keeper with critical roles in cellular metabolism.</description><subject>101/58</subject><subject>13/1</subject><subject>13/89</subject><subject>45/29</subject><subject>45/77</subject><subject>631/80/458/1733</subject><subject>631/80/86/2369</subject><subject>64/110</subject><subject>64/60</subject><subject>82/16</subject><subject>82/51</subject><subject>82/83</subject><subject>96/1</subject><subject>96/109</subject><subject>96/33</subject><subject>Adipocytes</subject><subject>Adipose tissue</subject><subject>AMP-activated protein kinase</subject><subject>AMP-Activated Protein Kinases - genetics</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>CCAAT-Enhancer-Binding Proteins - genetics</subject><subject>Cell Biology</subject><subject>Cytoplasm</subject><subject>Energy balance</subject><subject>Epigenetics</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Homeostasis</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>LKB1 protein</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Phosphates</subject><subject>Phosphorylation</subject><subject>Protein Processing, Post-Translational</subject><subject>Proteins</subject><subject>Substrates</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><issn>1001-0602</issn><issn>1748-7838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU9P3DAQxa2qVYGlX4ADstRLL4Hxf-eChBB0EZQiBGfLSSZLaDbZ2gnSfvt6GwqUAyfbmt-8medHyB6DAwbCHkbJJOcZcJYBKK2y9QeyzYy0mbHCfkx3gFTSwLfITowPAFxJxT6TLSGVZprl2-T0aixb9IHezW_OGG0i9XThB8x-Ia4w0L6mJbbt2Cbk-Mf1BfXl0Dw2w5r6rqL12KVn3-2ST7VvI355Omfk7uz09mSeXf78fn5yfJmVSsKQVbkSWGLaCKXXxpq8soUpDa_yWnlbFRW36FUukStlVQESoAadFzkvjGBKzMjRpLsaiyVWJXZD8K1bhWbpw9r1vnH_V7rm3i36R2cNl9zqJPDtSSD0v0eMg1s2cWPQd9iP0XFltFZ6mvX1DfrQj6FL9hzffJ4QVkOi-ESVoY8xYP28DAO3SclNKbmUkvubklunpv3XNp5b_sWSADEBMZW6BYaX2e_I_gG4s5w1</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Xu, Xiang</creator><creator>Ding, Guangjin</creator><creator>Liu, Caizhi</creator><creator>Ding, Yuhan</creator><creator>Chen, Xiaoxin</creator><creator>Huang, Xiaoli</creator><creator>Zhang, Chen-Song</creator><creator>Lu, Shanxin</creator><creator>Zhang, Yunpeng</creator><creator>Huang, Yuanyong</creator><creator>Chen, Zhaosu</creator><creator>Wei, Wei</creator><creator>Liao, Lujian</creator><creator>Lin, Shu-Hai</creator><creator>Li, Jingya</creator><creator>Liu, Wei</creator><creator>Li, Jiwen</creator><creator>Lin, Sheng-Cai</creator><creator>Ma, Xinran</creator><creator>Wong, Jiemin</creator><general>Springer Singapore</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5311-842X</orcidid><orcidid>https://orcid.org/0000-0001-5144-3803</orcidid><orcidid>https://orcid.org/0000-0003-1993-8376</orcidid></search><sort><creationdate>20220101</creationdate><title>Nuclear UHRF1 is a gate-keeper of cellular AMPK activity and function</title><author>Xu, Xiang ; Ding, Guangjin ; Liu, Caizhi ; Ding, Yuhan ; Chen, Xiaoxin ; Huang, Xiaoli ; Zhang, Chen-Song ; Lu, Shanxin ; Zhang, Yunpeng ; Huang, Yuanyong ; Chen, Zhaosu ; Wei, Wei ; Liao, Lujian ; Lin, Shu-Hai ; Li, Jingya ; Liu, Wei ; Li, Jiwen ; Lin, Sheng-Cai ; Ma, Xinran ; Wong, Jiemin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-d953ece060e4a67879d8b7c72d9f5a8dbd28ea594e25585b0400f069b92b73153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>101/58</topic><topic>13/1</topic><topic>13/89</topic><topic>45/29</topic><topic>45/77</topic><topic>631/80/458/1733</topic><topic>631/80/86/2369</topic><topic>64/110</topic><topic>64/60</topic><topic>82/16</topic><topic>82/51</topic><topic>82/83</topic><topic>96/1</topic><topic>96/109</topic><topic>96/33</topic><topic>Adipocytes</topic><topic>Adipose tissue</topic><topic>AMP-activated protein kinase</topic><topic>AMP-Activated Protein Kinases - genetics</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>CCAAT-Enhancer-Binding Proteins - genetics</topic><topic>Cell Biology</topic><topic>Cytoplasm</topic><topic>Energy balance</topic><topic>Epigenetics</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Homeostasis</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>LKB1 protein</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Phosphates</topic><topic>Phosphorylation</topic><topic>Protein Processing, Post-Translational</topic><topic>Proteins</topic><topic>Substrates</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiang</creatorcontrib><creatorcontrib>Ding, Guangjin</creatorcontrib><creatorcontrib>Liu, Caizhi</creatorcontrib><creatorcontrib>Ding, Yuhan</creatorcontrib><creatorcontrib>Chen, Xiaoxin</creatorcontrib><creatorcontrib>Huang, Xiaoli</creatorcontrib><creatorcontrib>Zhang, Chen-Song</creatorcontrib><creatorcontrib>Lu, Shanxin</creatorcontrib><creatorcontrib>Zhang, Yunpeng</creatorcontrib><creatorcontrib>Huang, Yuanyong</creatorcontrib><creatorcontrib>Chen, Zhaosu</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Liao, Lujian</creatorcontrib><creatorcontrib>Lin, Shu-Hai</creatorcontrib><creatorcontrib>Li, Jingya</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Li, Jiwen</creatorcontrib><creatorcontrib>Lin, Sheng-Cai</creatorcontrib><creatorcontrib>Ma, Xinran</creatorcontrib><creatorcontrib>Wong, Jiemin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiang</au><au>Ding, Guangjin</au><au>Liu, Caizhi</au><au>Ding, Yuhan</au><au>Chen, Xiaoxin</au><au>Huang, Xiaoli</au><au>Zhang, Chen-Song</au><au>Lu, Shanxin</au><au>Zhang, Yunpeng</au><au>Huang, Yuanyong</au><au>Chen, Zhaosu</au><au>Wei, Wei</au><au>Liao, Lujian</au><au>Lin, Shu-Hai</au><au>Li, Jingya</au><au>Liu, Wei</au><au>Li, Jiwen</au><au>Lin, Sheng-Cai</au><au>Ma, Xinran</au><au>Wong, Jiemin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear UHRF1 is a gate-keeper of cellular AMPK activity and function</atitle><jtitle>Cell research</jtitle><stitle>Cell Res</stitle><addtitle>Cell Res</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>32</volume><issue>1</issue><spage>54</spage><epage>71</epage><pages>54-71</pages><issn>1001-0602</issn><eissn>1748-7838</eissn><abstract>The AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis. Although much has been learned on how low energy status and glucose starvation activate AMPK, how AMPK activity is properly controlled in vivo is still poorly understood. Here we report that UHRF1, an epigenetic regulator highly expressed in proliferating and cancer cells, interacts with AMPK and serves to suppress AMPK activity under both basal and stressed conditions. As a nuclear protein, UHRF1 promotes AMPK nuclear retention and strongly suppresses nuclear AMPK activity toward substrates H2B and EZH2. Importantly, we demonstrate that UHRF1 also robustly inhibits AMPK activity in the cytoplasm compartment, most likely as a consequence of AMPK nucleocytoplasmic shuttling. Mechanistically, we found that UHRF1 has no obvious effect on AMPK activation by upstream kinases LKB1 and CAMKK2 but inhibits AMPK activity by acting as a bridging factor targeting phosphatase PP2A to dephosphorylate AMPK. Hepatic overexpression of UHRF1 showed profound effects on glucose and lipid metabolism in wild-type mice but not in those with the liver-specific knockout of AMPKα1/α2, whereas knockdown of UHRF1 in adipose tissue led to AMPK activation and reduced sizes of adipocytes and lipogenic activity, highlighting the physiological significance of this regulation in glucose and lipid metabolism. Thus, our study identifies UHRF1 as a novel AMPK gate-keeper with critical roles in cellular metabolism.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><pmid>34561619</pmid><doi>10.1038/s41422-021-00565-y</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5311-842X</orcidid><orcidid>https://orcid.org/0000-0001-5144-3803</orcidid><orcidid>https://orcid.org/0000-0003-1993-8376</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-0602 |
ispartof | Cell research, 2022-01, Vol.32 (1), p.54-71 |
issn | 1001-0602 1748-7838 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8724286 |
source | PubMed (Medline); Springer Link |
subjects | 101/58 13/1 13/89 45/29 45/77 631/80/458/1733 631/80/86/2369 64/110 64/60 82/16 82/51 82/83 96/1 96/109 96/33 Adipocytes Adipose tissue AMP-activated protein kinase AMP-Activated Protein Kinases - genetics AMP-Activated Protein Kinases - metabolism Animals Biomedical and Life Sciences CCAAT-Enhancer-Binding Proteins - genetics Cell Biology Cytoplasm Energy balance Epigenetics Glucose Glucose metabolism Homeostasis Kinases Life Sciences Lipid metabolism Lipids LKB1 protein Metabolism Mice Phosphates Phosphorylation Protein Processing, Post-Translational Proteins Substrates Ubiquitin-Protein Ligases - genetics |
title | Nuclear UHRF1 is a gate-keeper of cellular AMPK activity and function |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A24%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20UHRF1%20is%20a%20gate-keeper%20of%20cellular%20AMPK%20activity%20and%20function&rft.jtitle=Cell%20research&rft.au=Xu,%20Xiang&rft.date=2022-01-01&rft.volume=32&rft.issue=1&rft.spage=54&rft.epage=71&rft.pages=54-71&rft.issn=1001-0602&rft.eissn=1748-7838&rft_id=info:doi/10.1038/s41422-021-00565-y&rft_dat=%3Cproquest_pubme%3E2576656315%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-d953ece060e4a67879d8b7c72d9f5a8dbd28ea594e25585b0400f069b92b73153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2616133860&rft_id=info:pmid/34561619&rfr_iscdi=true |