Loading…

AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models

Abstract The AlphaFold Protein Structure Database (AlphaFold DB, https://alphafold.ebi.ac.uk) is an openly accessible, extensive database of high-accuracy protein-structure predictions. Powered by AlphaFold v2.0 of DeepMind, it has enabled an unprecedented expansion of the structural coverage of the...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2022-01, Vol.50 (D1), p.D439-D444
Main Authors: Varadi, Mihaly, Anyango, Stephen, Deshpande, Mandar, Nair, Sreenath, Natassia, Cindy, Yordanova, Galabina, Yuan, David, Stroe, Oana, Wood, Gemma, Laydon, Agata, Žídek, Augustin, Green, Tim, Tunyasuvunakool, Kathryn, Petersen, Stig, Jumper, John, Clancy, Ellen, Green, Richard, Vora, Ankur, Lutfi, Mira, Figurnov, Michael, Cowie, Andrew, Hobbs, Nicole, Kohli, Pushmeet, Kleywegt, Gerard, Birney, Ewan, Hassabis, Demis, Velankar, Sameer
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c459t-77ea1792ab545aa687323d90033b5f88500eb0b6667b7c51f514543a63be01873
cites cdi_FETCH-LOGICAL-c459t-77ea1792ab545aa687323d90033b5f88500eb0b6667b7c51f514543a63be01873
container_end_page D444
container_issue D1
container_start_page D439
container_title Nucleic acids research
container_volume 50
creator Varadi, Mihaly
Anyango, Stephen
Deshpande, Mandar
Nair, Sreenath
Natassia, Cindy
Yordanova, Galabina
Yuan, David
Stroe, Oana
Wood, Gemma
Laydon, Agata
Žídek, Augustin
Green, Tim
Tunyasuvunakool, Kathryn
Petersen, Stig
Jumper, John
Clancy, Ellen
Green, Richard
Vora, Ankur
Lutfi, Mira
Figurnov, Michael
Cowie, Andrew
Hobbs, Nicole
Kohli, Pushmeet
Kleywegt, Gerard
Birney, Ewan
Hassabis, Demis
Velankar, Sameer
description Abstract The AlphaFold Protein Structure Database (AlphaFold DB, https://alphafold.ebi.ac.uk) is an openly accessible, extensive database of high-accuracy protein-structure predictions. Powered by AlphaFold v2.0 of DeepMind, it has enabled an unprecedented expansion of the structural coverage of the known protein-sequence space. AlphaFold DB provides programmatic access to and interactive visualization of predicted atomic coordinates, per-residue and pairwise model-confidence estimates and predicted aligned errors. The initial release of AlphaFold DB contains over 360,000 predicted structures across 21 model-organism proteomes, which will soon be expanded to cover most of the (over 100 million) representative sequences from the UniRef90 data set. Lay Summary The AlphaFold Protein Structure Database (AlphaFold DB, https://alphafold.ebi.ac.uk) is an extensive, public database of highly accurate protein structure models. The models are the products of AlphaFold2, an Artificial Intelligence algorithm developed by DeepMind. AlphaFold enabled scientists to investigate an unprecedented number of protein structures. The database we describe here provides access to these predicted models and information on their accuracy. The first version of AlphaFold DB contains over 360,000 models of 21 biologically essential species.
doi_str_mv 10.1093/nar/gkab1061
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8728224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkab1061</oup_id><sourcerecordid>2599072629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-77ea1792ab545aa687323d90033b5f88500eb0b6667b7c51f514543a63be01873</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EokNhxxp5BwtC_RsnLJCq0kKlSiABa-vGufmBJA52MjAP0Peu0UwruunmenE_fz7WIeQlZ-84K-XJBOGk_QUVZzl_RDZc5iJTZS4ekw2TTGecqeKIPIvxJ2Ncca2ekiOpTMml4RtyfTrMHVz4oaZfg1-wn-i3JaxuWQPSj7BABRHf0xFi7Lc47Cj-nWGq-6mlS4c0HlgYqPNbDNAi9Q2d96os4u8VJ5e4GdL80y8d7fq2y8C5dMnt6OhrHOJz8qSBIeKLw3lMflycfz_7nF19-XR5dnqVOaXLJTMGgZtSQKWVBsgLI4WsS8akrHRTFJoxrFiV57mpjNO80VxpJSGXFTKe6GPyYe-d12rE2uG0pOh2Dv0IYWc99Pb-Zuo72_qtLYwohFBJ8OYgCD59LS527KPDYYAJ_Rqt0GXJjMhFmdC3e9QFH2PA5u4Zzuy_5mxqzt42l_BX_0e7g2-rSsDrPeDX-WHVDQX2pgs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599072629</pqid></control><display><type>article</type><title>AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models</title><source>PubMed Central</source><source>Oxford Open Access Journals</source><creator>Varadi, Mihaly ; Anyango, Stephen ; Deshpande, Mandar ; Nair, Sreenath ; Natassia, Cindy ; Yordanova, Galabina ; Yuan, David ; Stroe, Oana ; Wood, Gemma ; Laydon, Agata ; Žídek, Augustin ; Green, Tim ; Tunyasuvunakool, Kathryn ; Petersen, Stig ; Jumper, John ; Clancy, Ellen ; Green, Richard ; Vora, Ankur ; Lutfi, Mira ; Figurnov, Michael ; Cowie, Andrew ; Hobbs, Nicole ; Kohli, Pushmeet ; Kleywegt, Gerard ; Birney, Ewan ; Hassabis, Demis ; Velankar, Sameer</creator><creatorcontrib>Varadi, Mihaly ; Anyango, Stephen ; Deshpande, Mandar ; Nair, Sreenath ; Natassia, Cindy ; Yordanova, Galabina ; Yuan, David ; Stroe, Oana ; Wood, Gemma ; Laydon, Agata ; Žídek, Augustin ; Green, Tim ; Tunyasuvunakool, Kathryn ; Petersen, Stig ; Jumper, John ; Clancy, Ellen ; Green, Richard ; Vora, Ankur ; Lutfi, Mira ; Figurnov, Michael ; Cowie, Andrew ; Hobbs, Nicole ; Kohli, Pushmeet ; Kleywegt, Gerard ; Birney, Ewan ; Hassabis, Demis ; Velankar, Sameer</creatorcontrib><description>Abstract The AlphaFold Protein Structure Database (AlphaFold DB, https://alphafold.ebi.ac.uk) is an openly accessible, extensive database of high-accuracy protein-structure predictions. Powered by AlphaFold v2.0 of DeepMind, it has enabled an unprecedented expansion of the structural coverage of the known protein-sequence space. AlphaFold DB provides programmatic access to and interactive visualization of predicted atomic coordinates, per-residue and pairwise model-confidence estimates and predicted aligned errors. The initial release of AlphaFold DB contains over 360,000 predicted structures across 21 model-organism proteomes, which will soon be expanded to cover most of the (over 100 million) representative sequences from the UniRef90 data set. Lay Summary The AlphaFold Protein Structure Database (AlphaFold DB, https://alphafold.ebi.ac.uk) is an extensive, public database of highly accurate protein structure models. The models are the products of AlphaFold2, an Artificial Intelligence algorithm developed by DeepMind. AlphaFold enabled scientists to investigate an unprecedented number of protein structures. The database we describe here provides access to these predicted models and information on their accuracy. The first version of AlphaFold DB contains over 360,000 models of 21 biologically essential species.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkab1061</identifier><identifier>PMID: 34791371</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Amino Acid Sequence ; Animals ; Bacteria - genetics ; Bacteria - metabolism ; Databases, Protein ; Datasets as Topic ; Dictyostelium - genetics ; Dictyostelium - metabolism ; Fungi - genetics ; Fungi - metabolism ; Humans ; Internet ; Models, Molecular ; NAR Breakthrough ; Plants - genetics ; Plants - metabolism ; Protein Conformation, alpha-Helical ; Protein Conformation, beta-Strand ; Protein Folding ; Proteins - chemistry ; Proteins - genetics ; Proteins - metabolism ; Software ; Trypanosoma cruzi - genetics ; Trypanosoma cruzi - metabolism</subject><ispartof>Nucleic acids research, 2022-01, Vol.50 (D1), p.D439-D444</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-77ea1792ab545aa687323d90033b5f88500eb0b6667b7c51f514543a63be01873</citedby><cites>FETCH-LOGICAL-c459t-77ea1792ab545aa687323d90033b5f88500eb0b6667b7c51f514543a63be01873</cites><orcidid>0000-0001-8314-8497 ; 0000-0002-3687-0839 ; 0000-0002-8439-5964 ; 0000-0002-9043-7665</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8728224/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8728224/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34791371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Varadi, Mihaly</creatorcontrib><creatorcontrib>Anyango, Stephen</creatorcontrib><creatorcontrib>Deshpande, Mandar</creatorcontrib><creatorcontrib>Nair, Sreenath</creatorcontrib><creatorcontrib>Natassia, Cindy</creatorcontrib><creatorcontrib>Yordanova, Galabina</creatorcontrib><creatorcontrib>Yuan, David</creatorcontrib><creatorcontrib>Stroe, Oana</creatorcontrib><creatorcontrib>Wood, Gemma</creatorcontrib><creatorcontrib>Laydon, Agata</creatorcontrib><creatorcontrib>Žídek, Augustin</creatorcontrib><creatorcontrib>Green, Tim</creatorcontrib><creatorcontrib>Tunyasuvunakool, Kathryn</creatorcontrib><creatorcontrib>Petersen, Stig</creatorcontrib><creatorcontrib>Jumper, John</creatorcontrib><creatorcontrib>Clancy, Ellen</creatorcontrib><creatorcontrib>Green, Richard</creatorcontrib><creatorcontrib>Vora, Ankur</creatorcontrib><creatorcontrib>Lutfi, Mira</creatorcontrib><creatorcontrib>Figurnov, Michael</creatorcontrib><creatorcontrib>Cowie, Andrew</creatorcontrib><creatorcontrib>Hobbs, Nicole</creatorcontrib><creatorcontrib>Kohli, Pushmeet</creatorcontrib><creatorcontrib>Kleywegt, Gerard</creatorcontrib><creatorcontrib>Birney, Ewan</creatorcontrib><creatorcontrib>Hassabis, Demis</creatorcontrib><creatorcontrib>Velankar, Sameer</creatorcontrib><title>AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract The AlphaFold Protein Structure Database (AlphaFold DB, https://alphafold.ebi.ac.uk) is an openly accessible, extensive database of high-accuracy protein-structure predictions. Powered by AlphaFold v2.0 of DeepMind, it has enabled an unprecedented expansion of the structural coverage of the known protein-sequence space. AlphaFold DB provides programmatic access to and interactive visualization of predicted atomic coordinates, per-residue and pairwise model-confidence estimates and predicted aligned errors. The initial release of AlphaFold DB contains over 360,000 predicted structures across 21 model-organism proteomes, which will soon be expanded to cover most of the (over 100 million) representative sequences from the UniRef90 data set. Lay Summary The AlphaFold Protein Structure Database (AlphaFold DB, https://alphafold.ebi.ac.uk) is an extensive, public database of highly accurate protein structure models. The models are the products of AlphaFold2, an Artificial Intelligence algorithm developed by DeepMind. AlphaFold enabled scientists to investigate an unprecedented number of protein structures. The database we describe here provides access to these predicted models and information on their accuracy. The first version of AlphaFold DB contains over 360,000 models of 21 biologically essential species.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Databases, Protein</subject><subject>Datasets as Topic</subject><subject>Dictyostelium - genetics</subject><subject>Dictyostelium - metabolism</subject><subject>Fungi - genetics</subject><subject>Fungi - metabolism</subject><subject>Humans</subject><subject>Internet</subject><subject>Models, Molecular</subject><subject>NAR Breakthrough</subject><subject>Plants - genetics</subject><subject>Plants - metabolism</subject><subject>Protein Conformation, alpha-Helical</subject><subject>Protein Conformation, beta-Strand</subject><subject>Protein Folding</subject><subject>Proteins - chemistry</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>Software</subject><subject>Trypanosoma cruzi - genetics</subject><subject>Trypanosoma cruzi - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9kc1u1DAUhS0EokNhxxp5BwtC_RsnLJCq0kKlSiABa-vGufmBJA52MjAP0Peu0UwruunmenE_fz7WIeQlZ-84K-XJBOGk_QUVZzl_RDZc5iJTZS4ekw2TTGecqeKIPIvxJ2Ncca2ekiOpTMml4RtyfTrMHVz4oaZfg1-wn-i3JaxuWQPSj7BABRHf0xFi7Lc47Cj-nWGq-6mlS4c0HlgYqPNbDNAi9Q2d96os4u8VJ5e4GdL80y8d7fq2y8C5dMnt6OhrHOJz8qSBIeKLw3lMflycfz_7nF19-XR5dnqVOaXLJTMGgZtSQKWVBsgLI4WsS8akrHRTFJoxrFiV57mpjNO80VxpJSGXFTKe6GPyYe-d12rE2uG0pOh2Dv0IYWc99Pb-Zuo72_qtLYwohFBJ8OYgCD59LS527KPDYYAJ_Rqt0GXJjMhFmdC3e9QFH2PA5u4Zzuy_5mxqzt42l_BX_0e7g2-rSsDrPeDX-WHVDQX2pgs</recordid><startdate>20220107</startdate><enddate>20220107</enddate><creator>Varadi, Mihaly</creator><creator>Anyango, Stephen</creator><creator>Deshpande, Mandar</creator><creator>Nair, Sreenath</creator><creator>Natassia, Cindy</creator><creator>Yordanova, Galabina</creator><creator>Yuan, David</creator><creator>Stroe, Oana</creator><creator>Wood, Gemma</creator><creator>Laydon, Agata</creator><creator>Žídek, Augustin</creator><creator>Green, Tim</creator><creator>Tunyasuvunakool, Kathryn</creator><creator>Petersen, Stig</creator><creator>Jumper, John</creator><creator>Clancy, Ellen</creator><creator>Green, Richard</creator><creator>Vora, Ankur</creator><creator>Lutfi, Mira</creator><creator>Figurnov, Michael</creator><creator>Cowie, Andrew</creator><creator>Hobbs, Nicole</creator><creator>Kohli, Pushmeet</creator><creator>Kleywegt, Gerard</creator><creator>Birney, Ewan</creator><creator>Hassabis, Demis</creator><creator>Velankar, Sameer</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8314-8497</orcidid><orcidid>https://orcid.org/0000-0002-3687-0839</orcidid><orcidid>https://orcid.org/0000-0002-8439-5964</orcidid><orcidid>https://orcid.org/0000-0002-9043-7665</orcidid></search><sort><creationdate>20220107</creationdate><title>AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models</title><author>Varadi, Mihaly ; Anyango, Stephen ; Deshpande, Mandar ; Nair, Sreenath ; Natassia, Cindy ; Yordanova, Galabina ; Yuan, David ; Stroe, Oana ; Wood, Gemma ; Laydon, Agata ; Žídek, Augustin ; Green, Tim ; Tunyasuvunakool, Kathryn ; Petersen, Stig ; Jumper, John ; Clancy, Ellen ; Green, Richard ; Vora, Ankur ; Lutfi, Mira ; Figurnov, Michael ; Cowie, Andrew ; Hobbs, Nicole ; Kohli, Pushmeet ; Kleywegt, Gerard ; Birney, Ewan ; Hassabis, Demis ; Velankar, Sameer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-77ea1792ab545aa687323d90033b5f88500eb0b6667b7c51f514543a63be01873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Databases, Protein</topic><topic>Datasets as Topic</topic><topic>Dictyostelium - genetics</topic><topic>Dictyostelium - metabolism</topic><topic>Fungi - genetics</topic><topic>Fungi - metabolism</topic><topic>Humans</topic><topic>Internet</topic><topic>Models, Molecular</topic><topic>NAR Breakthrough</topic><topic>Plants - genetics</topic><topic>Plants - metabolism</topic><topic>Protein Conformation, alpha-Helical</topic><topic>Protein Conformation, beta-Strand</topic><topic>Protein Folding</topic><topic>Proteins - chemistry</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>Software</topic><topic>Trypanosoma cruzi - genetics</topic><topic>Trypanosoma cruzi - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varadi, Mihaly</creatorcontrib><creatorcontrib>Anyango, Stephen</creatorcontrib><creatorcontrib>Deshpande, Mandar</creatorcontrib><creatorcontrib>Nair, Sreenath</creatorcontrib><creatorcontrib>Natassia, Cindy</creatorcontrib><creatorcontrib>Yordanova, Galabina</creatorcontrib><creatorcontrib>Yuan, David</creatorcontrib><creatorcontrib>Stroe, Oana</creatorcontrib><creatorcontrib>Wood, Gemma</creatorcontrib><creatorcontrib>Laydon, Agata</creatorcontrib><creatorcontrib>Žídek, Augustin</creatorcontrib><creatorcontrib>Green, Tim</creatorcontrib><creatorcontrib>Tunyasuvunakool, Kathryn</creatorcontrib><creatorcontrib>Petersen, Stig</creatorcontrib><creatorcontrib>Jumper, John</creatorcontrib><creatorcontrib>Clancy, Ellen</creatorcontrib><creatorcontrib>Green, Richard</creatorcontrib><creatorcontrib>Vora, Ankur</creatorcontrib><creatorcontrib>Lutfi, Mira</creatorcontrib><creatorcontrib>Figurnov, Michael</creatorcontrib><creatorcontrib>Cowie, Andrew</creatorcontrib><creatorcontrib>Hobbs, Nicole</creatorcontrib><creatorcontrib>Kohli, Pushmeet</creatorcontrib><creatorcontrib>Kleywegt, Gerard</creatorcontrib><creatorcontrib>Birney, Ewan</creatorcontrib><creatorcontrib>Hassabis, Demis</creatorcontrib><creatorcontrib>Velankar, Sameer</creatorcontrib><collection>Oxford Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varadi, Mihaly</au><au>Anyango, Stephen</au><au>Deshpande, Mandar</au><au>Nair, Sreenath</au><au>Natassia, Cindy</au><au>Yordanova, Galabina</au><au>Yuan, David</au><au>Stroe, Oana</au><au>Wood, Gemma</au><au>Laydon, Agata</au><au>Žídek, Augustin</au><au>Green, Tim</au><au>Tunyasuvunakool, Kathryn</au><au>Petersen, Stig</au><au>Jumper, John</au><au>Clancy, Ellen</au><au>Green, Richard</au><au>Vora, Ankur</au><au>Lutfi, Mira</au><au>Figurnov, Michael</au><au>Cowie, Andrew</au><au>Hobbs, Nicole</au><au>Kohli, Pushmeet</au><au>Kleywegt, Gerard</au><au>Birney, Ewan</au><au>Hassabis, Demis</au><au>Velankar, Sameer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2022-01-07</date><risdate>2022</risdate><volume>50</volume><issue>D1</issue><spage>D439</spage><epage>D444</epage><pages>D439-D444</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><abstract>Abstract The AlphaFold Protein Structure Database (AlphaFold DB, https://alphafold.ebi.ac.uk) is an openly accessible, extensive database of high-accuracy protein-structure predictions. Powered by AlphaFold v2.0 of DeepMind, it has enabled an unprecedented expansion of the structural coverage of the known protein-sequence space. AlphaFold DB provides programmatic access to and interactive visualization of predicted atomic coordinates, per-residue and pairwise model-confidence estimates and predicted aligned errors. The initial release of AlphaFold DB contains over 360,000 predicted structures across 21 model-organism proteomes, which will soon be expanded to cover most of the (over 100 million) representative sequences from the UniRef90 data set. Lay Summary The AlphaFold Protein Structure Database (AlphaFold DB, https://alphafold.ebi.ac.uk) is an extensive, public database of highly accurate protein structure models. The models are the products of AlphaFold2, an Artificial Intelligence algorithm developed by DeepMind. AlphaFold enabled scientists to investigate an unprecedented number of protein structures. The database we describe here provides access to these predicted models and information on their accuracy. The first version of AlphaFold DB contains over 360,000 models of 21 biologically essential species.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>34791371</pmid><doi>10.1093/nar/gkab1061</doi><orcidid>https://orcid.org/0000-0001-8314-8497</orcidid><orcidid>https://orcid.org/0000-0002-3687-0839</orcidid><orcidid>https://orcid.org/0000-0002-8439-5964</orcidid><orcidid>https://orcid.org/0000-0002-9043-7665</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2022-01, Vol.50 (D1), p.D439-D444
issn 0305-1048
1362-4962
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8728224
source PubMed Central; Oxford Open Access Journals
subjects Amino Acid Sequence
Animals
Bacteria - genetics
Bacteria - metabolism
Databases, Protein
Datasets as Topic
Dictyostelium - genetics
Dictyostelium - metabolism
Fungi - genetics
Fungi - metabolism
Humans
Internet
Models, Molecular
NAR Breakthrough
Plants - genetics
Plants - metabolism
Protein Conformation, alpha-Helical
Protein Conformation, beta-Strand
Protein Folding
Proteins - chemistry
Proteins - genetics
Proteins - metabolism
Software
Trypanosoma cruzi - genetics
Trypanosoma cruzi - metabolism
title AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A07%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AlphaFold%20Protein%20Structure%20Database:%20massively%20expanding%20the%20structural%20coverage%20of%20protein-sequence%20space%20with%20high-accuracy%20models&rft.jtitle=Nucleic%20acids%20research&rft.au=Varadi,%20Mihaly&rft.date=2022-01-07&rft.volume=50&rft.issue=D1&rft.spage=D439&rft.epage=D444&rft.pages=D439-D444&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkab1061&rft_dat=%3Cproquest_pubme%3E2599072629%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-77ea1792ab545aa687323d90033b5f88500eb0b6667b7c51f514543a63be01873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2599072629&rft_id=info:pmid/34791371&rft_oup_id=10.1093/nar/gkab1061&rfr_iscdi=true