Loading…
Sex-Dependent Effects of Nephron Ift88 Disruption on BP, Renal Function, and Cystogenesis
Primary cilia regulation of renal function and BP in health and disease is incompletely understood. This study investigated the effect of nephron ciliary loss on renal physiology, BP, and ensuing cystogenesis. Mice underwent doxycycline (DOX)-inducible nephron-specific knockout (KO) of the gene at 2...
Saved in:
Published in: | Journal of the American Society of Nephrology 2021-09, Vol.32 (9), p.2210-2222 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Primary cilia regulation of renal function and BP in health and disease is incompletely understood. This study investigated the effect of nephron ciliary loss on renal physiology, BP, and ensuing cystogenesis.
Mice underwent doxycycline (DOX)-inducible nephron-specific knockout (KO) of the
gene at 2 months of age using a Cre-LoxP strategy. BP, kidney function, and renal pathology were studied 2 and 9 months after DOX (Ift88 KO) or vehicle (control).
At 2 months post-DOX, male, but not female, Ift88 KO, compared with sex-matched control, mice had reduced BP, enhanced salt-induced natriuresis, increased urinary nitrite and nitrate (NOx) excretion, and increased kidney NOS3 levels, which localized to the outer medulla; the reductions in BP in male mice were prevented by L-NAME. At 9 months post-DOX, male, but not female, Ift88 KO mice had polycystic kidneys, elevated BP, and reduced urinary NOx excretion. No differences were observed in plasma renin concentration, plasma aldosterone, urine vasopressin, or urine PGE
between Ift88 KO and control mice at 2 or 9 months post-DOX.
Nephron cilia disruption in male, but not female, mice (
) reduces BP prior to cyst formation, (
) increases NOx production that may account for the lower BP prior to cyst formation, and (
) induces polycystic kidneys that are associated with hypertension and reduced renal NO production. |
---|---|
ISSN: | 1046-6673 1533-3450 |
DOI: | 10.1681/ASN.2020111571 |