Loading…

Optimization of Machining Parameters for Milling Zirconia Ceramics by Polycrystalline Diamond Tool

Zirconia ceramics are widely used in many fields because of their excellent physical and mechanical properties. However, there are some challenges to machine zirconia ceramics with high processing efficiency. In order to optimize parameters for milling zirconia ceramics by polycrystalline diamond to...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2021-12, Vol.15 (1), p.208
Main Authors: Yan, Xuefeng, Dong, Shuliang, Li, Xianzhun, Zhao, Zhonglin, Dong, Shuling, An, Libao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Zirconia ceramics are widely used in many fields because of their excellent physical and mechanical properties. However, there are some challenges to machine zirconia ceramics with high processing efficiency. In order to optimize parameters for milling zirconia ceramics by polycrystalline diamond tool, finite element method was used to simulate machining process based on Johnson-Cook constitutive model. The effects of spindle speed, feed rate, radial and axial cutting depth on cutting force, tool flank wear and material removal rate were investigated. The results of the simulation experiment were analyzed and optimized by the response surface method. The optimal parameter combination was obtained when the spindle speed, feed rate, radial and axial cutting depth were 8000 r/min, 90.65 mm/min, 0.10 mm and 1.37 mm, respectively. Under these conditions, the cutting force was 234.81 N, the tool flank wear was 33.40 μm when the milling length was 60 mm and the material removal rate was 44.65 mm /min.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15010208