Loading…

The ascending arousal system promotes optimal performance through mesoscale network integration in a visuospatial attentional task

Previous research has shown that the autonomic nervous system provides essential constraints over ongoing cognitive function. However, there is currently a relative lack of direct empirical evidence for how this interaction manifests in the brain at the macroscale level. Here, we examine the role of...

Full description

Saved in:
Bibliographic Details
Published in:Network neuroscience (Cambridge, Mass.) Mass.), 2021-11, Vol.5 (4), p.890-910
Main Authors: Wainstein, Gabriel, Rojas-Líbano, Daniel, Medel, Vicente, Alnæs, Dag, Kolskår, Knut K, Endestad, Tor, Laeng, Bruno, Ossandon, Tomas, Crossley, Nicolás, Matar, Elie, Shine, James M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c591t-aedb91323bc378193081896bbf0164d05e0f2f995834d500f36432d84a9a7cb83
cites cdi_FETCH-LOGICAL-c591t-aedb91323bc378193081896bbf0164d05e0f2f995834d500f36432d84a9a7cb83
container_end_page 910
container_issue 4
container_start_page 890
container_title Network neuroscience (Cambridge, Mass.)
container_volume 5
creator Wainstein, Gabriel
Rojas-Líbano, Daniel
Medel, Vicente
Alnæs, Dag
Kolskår, Knut K
Endestad, Tor
Laeng, Bruno
Ossandon, Tomas
Crossley, Nicolás
Matar, Elie
Shine, James M
description Previous research has shown that the autonomic nervous system provides essential constraints over ongoing cognitive function. However, there is currently a relative lack of direct empirical evidence for how this interaction manifests in the brain at the macroscale level. Here, we examine the role of ascending arousal and attentional load on large-scale network dynamics by combining pupillometry, functional MRI, and graph theoretical analysis to analyze data from a visual motion-tracking task with a parametric load manipulation. We found that attentional load effects were observable in measures of pupil diameter and in a set of brain regions that parametrically modulated their BOLD activity and mesoscale network-level integration. In addition, the regional patterns of network reconfiguration were correlated with the spatial distribution of the α2a adrenergic receptor. Our results further solidify the relationship between ascending noradrenergic activity, large-scale network integration, and cognitive task performance. In our daily lives, it is usual to encounter highly demanding cognitive tasks. They have been traditionally regarded as challenges that are solved mainly through cerebral activity, specifically via information-processing steps carried by neurons in the cerebral cortex. Activity in cortical networks thus constitutes a key factor for improving our understanding of cognitive processes. However, recent evidence has shown that evolutionary older players in the central nervous system, such as brain stem’s ascending modulatory systems, might play an equally important role in diverse cognitive mechanisms. Our article examines the role of the ascending arousal system on large-scale network dynamics by combining pupillometry, functional MRI, and graph theoretical analysis.
doi_str_mv 10.1162/netn_a_00205
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8746119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4144d8ac2e18477db4a59b1cd7fbab7a</doaj_id><sourcerecordid>2890460525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-aedb91323bc378193081896bbf0164d05e0f2f995834d500f36432d84a9a7cb83</originalsourceid><addsrcrecordid>eNp1kk1v1DAQhiMEotXSG2ewxIUDC_5MnAsIVXxUqsSlnK1J4ux6m9jBdhaVI7-cWbYtuwhOHs88fmfGM0XxlNHXjJX8jbfZGzCUcqoeFKdcVnzJKsUeHtgnxVlKG4oM44xK_bg4EYpyqYQ6LX5erS2B1FrfOb8iEMOcYCDpJmU7kimGMWSbSJiyG9E_2diHOIJvLclrhFdrMtoUUguDJVjN9xCvifPZriJkFzzaBMjWpTmkCT2oATlbv4uhnSFdPyke9TAke3Z7LoqvHz9cnX9eXn75dHH-_nLZqprlJdiuqZngomlFpVktqGa6Lpump6yUHVWW9ryva6WF7BSlvSil4J2WUEPVNlosiou9bhdgY6aIDcUbE8CZ344QVwZidu1gjWRSdhpabpmWVdU1ElTdsLar-gaaClDr7V5rmpvRdvh9OcJwJHoc8W5tVmFrdCVLhsUviud7gTa6lJ03PkQwjGrFTS0kNrooXt6miOHbbFM2o8M5DQN4i0MyvGS1kkKyCtEXf6GbMEf8X6R0TWVJFVdIvbpLGVKKtr8vl1Gz2yZzuE2IPzts8R6-250_BY7uIOF_tN79A90hW-WkwVEqpgzHDcXHeDU_3HSs8AsMb-pA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890460525</pqid></control><display><type>article</type><title>The ascending arousal system promotes optimal performance through mesoscale network integration in a visuospatial attentional task</title><source>NORA - Norwegian Open Research Archives</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Wainstein, Gabriel ; Rojas-Líbano, Daniel ; Medel, Vicente ; Alnæs, Dag ; Kolskår, Knut K ; Endestad, Tor ; Laeng, Bruno ; Ossandon, Tomas ; Crossley, Nicolás ; Matar, Elie ; Shine, James M</creator><creatorcontrib>Wainstein, Gabriel ; Rojas-Líbano, Daniel ; Medel, Vicente ; Alnæs, Dag ; Kolskår, Knut K ; Endestad, Tor ; Laeng, Bruno ; Ossandon, Tomas ; Crossley, Nicolás ; Matar, Elie ; Shine, James M</creatorcontrib><description>Previous research has shown that the autonomic nervous system provides essential constraints over ongoing cognitive function. However, there is currently a relative lack of direct empirical evidence for how this interaction manifests in the brain at the macroscale level. Here, we examine the role of ascending arousal and attentional load on large-scale network dynamics by combining pupillometry, functional MRI, and graph theoretical analysis to analyze data from a visual motion-tracking task with a parametric load manipulation. We found that attentional load effects were observable in measures of pupil diameter and in a set of brain regions that parametrically modulated their BOLD activity and mesoscale network-level integration. In addition, the regional patterns of network reconfiguration were correlated with the spatial distribution of the α2a adrenergic receptor. Our results further solidify the relationship between ascending noradrenergic activity, large-scale network integration, and cognitive task performance. In our daily lives, it is usual to encounter highly demanding cognitive tasks. They have been traditionally regarded as challenges that are solved mainly through cerebral activity, specifically via information-processing steps carried by neurons in the cerebral cortex. Activity in cortical networks thus constitutes a key factor for improving our understanding of cognitive processes. However, recent evidence has shown that evolutionary older players in the central nervous system, such as brain stem’s ascending modulatory systems, might play an equally important role in diverse cognitive mechanisms. Our article examines the role of the ascending arousal system on large-scale network dynamics by combining pupillometry, functional MRI, and graph theoretical analysis.</description><identifier>ISSN: 2472-1751</identifier><identifier>EISSN: 2472-1751</identifier><identifier>DOI: 10.1162/netn_a_00205</identifier><identifier>PMID: 35024535</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Adrenergic receptors ; Arousal ; Attention ; Autonomic nervous system ; Brain stem ; Central nervous system ; Cerebral cortex ; Cognitive ability ; Cognitive tasks ; Diameters ; Empirical analysis ; fMRI ; Functional magnetic resonance imaging ; Information processing ; Integration ; Locus coeruleus ; Mental effort ; Mesoscale phenomena ; Motion detection ; Nervous system ; Network integration ; Neuromodulation ; Noradrenergic system ; Pupil diameter ; Pupillometry ; Receptors (physiology) ; Reconfiguration ; Spatial distribution ; Visual tasks</subject><ispartof>Network neuroscience (Cambridge, Mass.), 2021-11, Vol.5 (4), p.890-910</ispartof><rights>2021 Massachusetts Institute of Technology.</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>2021 Massachusetts Institute of Technology 2021 Massachusetts Institute of Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-aedb91323bc378193081896bbf0164d05e0f2f995834d500f36432d84a9a7cb83</citedby><cites>FETCH-LOGICAL-c591t-aedb91323bc378193081896bbf0164d05e0f2f995834d500f36432d84a9a7cb83</cites><orcidid>0000-0002-4403-6887 ; 0000-0003-1762-5499 ; 0000-0002-7306-7754 ; 0000-0001-7361-5418 ; 0000-0002-8106-6647 ; 0000-0003-3878-814X ; 0000-0003-1539-4893 ; 0000-0002-4994-0488 ; 0000-0002-9517-5545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746119/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2890460525?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,25736,26550,27907,27908,36995,36996,44573,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35024535$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wainstein, Gabriel</creatorcontrib><creatorcontrib>Rojas-Líbano, Daniel</creatorcontrib><creatorcontrib>Medel, Vicente</creatorcontrib><creatorcontrib>Alnæs, Dag</creatorcontrib><creatorcontrib>Kolskår, Knut K</creatorcontrib><creatorcontrib>Endestad, Tor</creatorcontrib><creatorcontrib>Laeng, Bruno</creatorcontrib><creatorcontrib>Ossandon, Tomas</creatorcontrib><creatorcontrib>Crossley, Nicolás</creatorcontrib><creatorcontrib>Matar, Elie</creatorcontrib><creatorcontrib>Shine, James M</creatorcontrib><title>The ascending arousal system promotes optimal performance through mesoscale network integration in a visuospatial attentional task</title><title>Network neuroscience (Cambridge, Mass.)</title><addtitle>Netw Neurosci</addtitle><description>Previous research has shown that the autonomic nervous system provides essential constraints over ongoing cognitive function. However, there is currently a relative lack of direct empirical evidence for how this interaction manifests in the brain at the macroscale level. Here, we examine the role of ascending arousal and attentional load on large-scale network dynamics by combining pupillometry, functional MRI, and graph theoretical analysis to analyze data from a visual motion-tracking task with a parametric load manipulation. We found that attentional load effects were observable in measures of pupil diameter and in a set of brain regions that parametrically modulated their BOLD activity and mesoscale network-level integration. In addition, the regional patterns of network reconfiguration were correlated with the spatial distribution of the α2a adrenergic receptor. Our results further solidify the relationship between ascending noradrenergic activity, large-scale network integration, and cognitive task performance. In our daily lives, it is usual to encounter highly demanding cognitive tasks. They have been traditionally regarded as challenges that are solved mainly through cerebral activity, specifically via information-processing steps carried by neurons in the cerebral cortex. Activity in cortical networks thus constitutes a key factor for improving our understanding of cognitive processes. However, recent evidence has shown that evolutionary older players in the central nervous system, such as brain stem’s ascending modulatory systems, might play an equally important role in diverse cognitive mechanisms. Our article examines the role of the ascending arousal system on large-scale network dynamics by combining pupillometry, functional MRI, and graph theoretical analysis.</description><subject>Adrenergic receptors</subject><subject>Arousal</subject><subject>Attention</subject><subject>Autonomic nervous system</subject><subject>Brain stem</subject><subject>Central nervous system</subject><subject>Cerebral cortex</subject><subject>Cognitive ability</subject><subject>Cognitive tasks</subject><subject>Diameters</subject><subject>Empirical analysis</subject><subject>fMRI</subject><subject>Functional magnetic resonance imaging</subject><subject>Information processing</subject><subject>Integration</subject><subject>Locus coeruleus</subject><subject>Mental effort</subject><subject>Mesoscale phenomena</subject><subject>Motion detection</subject><subject>Nervous system</subject><subject>Network integration</subject><subject>Neuromodulation</subject><subject>Noradrenergic system</subject><subject>Pupil diameter</subject><subject>Pupillometry</subject><subject>Receptors (physiology)</subject><subject>Reconfiguration</subject><subject>Spatial distribution</subject><subject>Visual tasks</subject><issn>2472-1751</issn><issn>2472-1751</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>3HK</sourceid><sourceid>DOA</sourceid><recordid>eNp1kk1v1DAQhiMEotXSG2ewxIUDC_5MnAsIVXxUqsSlnK1J4ux6m9jBdhaVI7-cWbYtuwhOHs88fmfGM0XxlNHXjJX8jbfZGzCUcqoeFKdcVnzJKsUeHtgnxVlKG4oM44xK_bg4EYpyqYQ6LX5erS2B1FrfOb8iEMOcYCDpJmU7kimGMWSbSJiyG9E_2diHOIJvLclrhFdrMtoUUguDJVjN9xCvifPZriJkFzzaBMjWpTmkCT2oATlbv4uhnSFdPyke9TAke3Z7LoqvHz9cnX9eXn75dHH-_nLZqprlJdiuqZngomlFpVktqGa6Lpump6yUHVWW9ryva6WF7BSlvSil4J2WUEPVNlosiou9bhdgY6aIDcUbE8CZ344QVwZidu1gjWRSdhpabpmWVdU1ElTdsLar-gaaClDr7V5rmpvRdvh9OcJwJHoc8W5tVmFrdCVLhsUviud7gTa6lJ03PkQwjGrFTS0kNrooXt6miOHbbFM2o8M5DQN4i0MyvGS1kkKyCtEXf6GbMEf8X6R0TWVJFVdIvbpLGVKKtr8vl1Gz2yZzuE2IPzts8R6-250_BY7uIOF_tN79A90hW-WkwVEqpgzHDcXHeDU_3HSs8AsMb-pA</recordid><startdate>20211130</startdate><enddate>20211130</enddate><creator>Wainstein, Gabriel</creator><creator>Rojas-Líbano, Daniel</creator><creator>Medel, Vicente</creator><creator>Alnæs, Dag</creator><creator>Kolskår, Knut K</creator><creator>Endestad, Tor</creator><creator>Laeng, Bruno</creator><creator>Ossandon, Tomas</creator><creator>Crossley, Nicolás</creator><creator>Matar, Elie</creator><creator>Shine, James M</creator><general>MIT Press</general><general>MIT Press Journals, The</general><general>The MIT Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>LK8</scope><scope>M7P</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4403-6887</orcidid><orcidid>https://orcid.org/0000-0003-1762-5499</orcidid><orcidid>https://orcid.org/0000-0002-7306-7754</orcidid><orcidid>https://orcid.org/0000-0001-7361-5418</orcidid><orcidid>https://orcid.org/0000-0002-8106-6647</orcidid><orcidid>https://orcid.org/0000-0003-3878-814X</orcidid><orcidid>https://orcid.org/0000-0003-1539-4893</orcidid><orcidid>https://orcid.org/0000-0002-4994-0488</orcidid><orcidid>https://orcid.org/0000-0002-9517-5545</orcidid></search><sort><creationdate>20211130</creationdate><title>The ascending arousal system promotes optimal performance through mesoscale network integration in a visuospatial attentional task</title><author>Wainstein, Gabriel ; Rojas-Líbano, Daniel ; Medel, Vicente ; Alnæs, Dag ; Kolskår, Knut K ; Endestad, Tor ; Laeng, Bruno ; Ossandon, Tomas ; Crossley, Nicolás ; Matar, Elie ; Shine, James M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-aedb91323bc378193081896bbf0164d05e0f2f995834d500f36432d84a9a7cb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adrenergic receptors</topic><topic>Arousal</topic><topic>Attention</topic><topic>Autonomic nervous system</topic><topic>Brain stem</topic><topic>Central nervous system</topic><topic>Cerebral cortex</topic><topic>Cognitive ability</topic><topic>Cognitive tasks</topic><topic>Diameters</topic><topic>Empirical analysis</topic><topic>fMRI</topic><topic>Functional magnetic resonance imaging</topic><topic>Information processing</topic><topic>Integration</topic><topic>Locus coeruleus</topic><topic>Mental effort</topic><topic>Mesoscale phenomena</topic><topic>Motion detection</topic><topic>Nervous system</topic><topic>Network integration</topic><topic>Neuromodulation</topic><topic>Noradrenergic system</topic><topic>Pupil diameter</topic><topic>Pupillometry</topic><topic>Receptors (physiology)</topic><topic>Reconfiguration</topic><topic>Spatial distribution</topic><topic>Visual tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wainstein, Gabriel</creatorcontrib><creatorcontrib>Rojas-Líbano, Daniel</creatorcontrib><creatorcontrib>Medel, Vicente</creatorcontrib><creatorcontrib>Alnæs, Dag</creatorcontrib><creatorcontrib>Kolskår, Knut K</creatorcontrib><creatorcontrib>Endestad, Tor</creatorcontrib><creatorcontrib>Laeng, Bruno</creatorcontrib><creatorcontrib>Ossandon, Tomas</creatorcontrib><creatorcontrib>Crossley, Nicolás</creatorcontrib><creatorcontrib>Matar, Elie</creatorcontrib><creatorcontrib>Shine, James M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Network neuroscience (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wainstein, Gabriel</au><au>Rojas-Líbano, Daniel</au><au>Medel, Vicente</au><au>Alnæs, Dag</au><au>Kolskår, Knut K</au><au>Endestad, Tor</au><au>Laeng, Bruno</au><au>Ossandon, Tomas</au><au>Crossley, Nicolás</au><au>Matar, Elie</au><au>Shine, James M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The ascending arousal system promotes optimal performance through mesoscale network integration in a visuospatial attentional task</atitle><jtitle>Network neuroscience (Cambridge, Mass.)</jtitle><addtitle>Netw Neurosci</addtitle><date>2021-11-30</date><risdate>2021</risdate><volume>5</volume><issue>4</issue><spage>890</spage><epage>910</epage><pages>890-910</pages><issn>2472-1751</issn><eissn>2472-1751</eissn><abstract>Previous research has shown that the autonomic nervous system provides essential constraints over ongoing cognitive function. However, there is currently a relative lack of direct empirical evidence for how this interaction manifests in the brain at the macroscale level. Here, we examine the role of ascending arousal and attentional load on large-scale network dynamics by combining pupillometry, functional MRI, and graph theoretical analysis to analyze data from a visual motion-tracking task with a parametric load manipulation. We found that attentional load effects were observable in measures of pupil diameter and in a set of brain regions that parametrically modulated their BOLD activity and mesoscale network-level integration. In addition, the regional patterns of network reconfiguration were correlated with the spatial distribution of the α2a adrenergic receptor. Our results further solidify the relationship between ascending noradrenergic activity, large-scale network integration, and cognitive task performance. In our daily lives, it is usual to encounter highly demanding cognitive tasks. They have been traditionally regarded as challenges that are solved mainly through cerebral activity, specifically via information-processing steps carried by neurons in the cerebral cortex. Activity in cortical networks thus constitutes a key factor for improving our understanding of cognitive processes. However, recent evidence has shown that evolutionary older players in the central nervous system, such as brain stem’s ascending modulatory systems, might play an equally important role in diverse cognitive mechanisms. Our article examines the role of the ascending arousal system on large-scale network dynamics by combining pupillometry, functional MRI, and graph theoretical analysis.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>35024535</pmid><doi>10.1162/netn_a_00205</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-4403-6887</orcidid><orcidid>https://orcid.org/0000-0003-1762-5499</orcidid><orcidid>https://orcid.org/0000-0002-7306-7754</orcidid><orcidid>https://orcid.org/0000-0001-7361-5418</orcidid><orcidid>https://orcid.org/0000-0002-8106-6647</orcidid><orcidid>https://orcid.org/0000-0003-3878-814X</orcidid><orcidid>https://orcid.org/0000-0003-1539-4893</orcidid><orcidid>https://orcid.org/0000-0002-4994-0488</orcidid><orcidid>https://orcid.org/0000-0002-9517-5545</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2472-1751
ispartof Network neuroscience (Cambridge, Mass.), 2021-11, Vol.5 (4), p.890-910
issn 2472-1751
2472-1751
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8746119
source NORA - Norwegian Open Research Archives; Publicly Available Content Database; PubMed Central
subjects Adrenergic receptors
Arousal
Attention
Autonomic nervous system
Brain stem
Central nervous system
Cerebral cortex
Cognitive ability
Cognitive tasks
Diameters
Empirical analysis
fMRI
Functional magnetic resonance imaging
Information processing
Integration
Locus coeruleus
Mental effort
Mesoscale phenomena
Motion detection
Nervous system
Network integration
Neuromodulation
Noradrenergic system
Pupil diameter
Pupillometry
Receptors (physiology)
Reconfiguration
Spatial distribution
Visual tasks
title The ascending arousal system promotes optimal performance through mesoscale network integration in a visuospatial attentional task
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20ascending%20arousal%20system%20promotes%20optimal%20performance%20through%20mesoscale%20network%20integration%20in%20a%20visuospatial%20attentional%20task&rft.jtitle=Network%20neuroscience%20(Cambridge,%20Mass.)&rft.au=Wainstein,%20Gabriel&rft.date=2021-11-30&rft.volume=5&rft.issue=4&rft.spage=890&rft.epage=910&rft.pages=890-910&rft.issn=2472-1751&rft.eissn=2472-1751&rft_id=info:doi/10.1162/netn_a_00205&rft_dat=%3Cproquest_pubme%3E2890460525%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c591t-aedb91323bc378193081896bbf0164d05e0f2f995834d500f36432d84a9a7cb83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2890460525&rft_id=info:pmid/35024535&rfr_iscdi=true