Loading…

Obesity status and obesity-associated gut dysbiosis effects on hypothalamic structural covariance

Background Functional connectivity alterations in the lateral and medial hypothalamic networks have been associated with the development and maintenance of obesity, but the possible impact on the structural properties of these networks remains largely unexplored. Also, obesity-related gut dysbiosis...

Full description

Saved in:
Bibliographic Details
Published in:International Journal of Obesity 2022-01, Vol.46 (1), p.30-38
Main Authors: Contreras-Rodriguez, O., Arnoriaga-Rodríguez, M., Miranda-Olivos, R., Blasco, G., Biarnés, C., Puig, J., Rivera-Pinto, J., Calle, M. L., Pérez-Brocal, V., Moya, A., Coll, C., Ramió-Torrentà, L., Soriano-Mas, C., Fernandez-Real, J. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Functional connectivity alterations in the lateral and medial hypothalamic networks have been associated with the development and maintenance of obesity, but the possible impact on the structural properties of these networks remains largely unexplored. Also, obesity-related gut dysbiosis may delineate specific hypothalamic alterations within obese conditions. We aim to assess the effects of obesity, and obesity and gut-dysbiosis on the structural covariance differences in hypothalamic networks, executive functioning, and depressive symptoms. Methods Medial (MH) and lateral (LH) hypothalamic structural covariance alterations were identified in 57 subjects with obesity compared to 47 subjects without obesity. Gut dysbiosis in the subjects with obesity was defined by the presence of high ( n  = 28) and low ( n  = 29) values in a BMI-associated microbial signature, and posthoc comparisons between these groups were used as a proxy to explore the role of obesity-related gut dysbiosis on the hypothalamic measurements, executive function, and depressive symptoms. Results Structural covariance alterations between the MH and the striatum, lateral prefrontal, cingulate, insula, and temporal cortices are congruent with previously functional connectivity disruptions in obesity conditions. MH structural covariance decreases encompassed postcentral parietal cortices in the subjects with obesity and gut-dysbiosis, but increases with subcortical nuclei involved in the coding food-related hedonic information in the subjects with obesity without gut-dysbiosis. Alterations for the structural covariance of the LH in the subjects with obesity and gut-dysbiosis encompassed increases with frontolimbic networks, but decreases with the lateral orbitofrontal cortex in the subjects with obesity without gut-dysbiosis. Subjects with obesity and gut dysbiosis showed higher executive dysfunction and depressive symptoms. Conclusions Obesity-related gut dysbiosis is linked to specific structural covariance alterations in hypothalamic networks relevant to the integration of somatic-visceral information, and emotion regulation.
ISSN:0307-0565
1476-5497
DOI:10.1038/s41366-021-00953-9