Loading…

Mechanisms and Critical Technologies of Transport Inhibitor Agent (TIA) throughout C-S-H Nano-Channels

The critical issue of the durability of marine concrete lies in the continuous penetration and rapid enrichment of corrosive ions. Here a new ion transfer inhibitor, as TIA, with calcium silicate hydrate (C-S-H) interfacial affinity and hydrophobicity is proposed through insights from molecular dyna...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2022-01, Vol.15 (2), p.515
Main Authors: Luo, Qi, Huang, Jiale
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The critical issue of the durability of marine concrete lies in the continuous penetration and rapid enrichment of corrosive ions. Here a new ion transfer inhibitor, as TIA, with calcium silicate hydrate (C-S-H) interfacial affinity and hydrophobicity is proposed through insights from molecular dynamics into the percolation behavior of the ion solution in C-S-H nano-channels and combined with molecular design concepts. One side of the TIA can be adsorbed on the surface of the cement matrix and can form clusters of corrosive ions to block the gel pores so as to resist the ion solution percolation process. Its other side is structured as a hydrophobic carbon chain, similar to a door hinge, which can stick to the matrix surface smoothly before the erosion solution is percolated. It can then change into a perpendicular chain shape to reduce the percolation channel's diameter and thereby inhibit the percolation when ions meet the inhibitor. Therefore, once the erosion solution contacts TIA, it can quickly chelate with calcium ions and erosion ions at the interface to form clusters and compact pores. In addition, the water absorption, chloride migration coefficient, and chloride content of concrete samples decreased significantly after adding TIA, proving that TIA can effectively enhance the durability of cement-based materials. The structure-activity relationship of ion transfer that is proposed can provide new ideas for solving the critical problems of durability of cement-based materials and polymer molecular design.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15020515