Loading…

Screening novel genes by a comprehensive strategy to construct multiple stress-tolerant industrial Saccharomyces cerevisiae with prominent bioethanol production

Strong multiple stress-tolerance is a desirable characteristic for Saccharomyces cerevisiae when different feedstocks are used for economical industrial ethanol production. Random mutagenesis or genome shuffling has been applied for improving multiple stress-tolerance, however, these techniques are...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology for biofuels 2022-01, Vol.15 (1), p.11-11, Article 11
Main Authors: Wang, Li, Li, Bo, Su, Ran-Ran, Wang, Shi-Peng, Xia, Zi-Yuan, Xie, Cai-Yun, Tang, Yue-Qin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Strong multiple stress-tolerance is a desirable characteristic for Saccharomyces cerevisiae when different feedstocks are used for economical industrial ethanol production. Random mutagenesis or genome shuffling has been applied for improving multiple stress-tolerance, however, these techniques are generally time-consuming and labor cost-intensive and their molecular mechanisms are unclear. Genetic engineering, as an efficient technology, is poorly applied to construct multiple stress-tolerant industrial S. cerevisiae due to lack of clear genetic targets. Therefore, constructing multiple stress-tolerant industrial S. cerevisiae is challenging. In this study, some target genes were mined by comparative transcriptomics analysis and applied for the construction of multiple stress-tolerant industrial S. cerevisiae strains with prominent bioethanol production. Twenty-eight shared differentially expressed genes (DEGs) were identified by comparative analysis of the transcriptomes of a multiple stress-tolerant strain E-158 and its original strain KF-7 under five stress conditions (high ethanol, high temperature, high glucose, high salt, etc.). Six of the shared DEGs which may have strong relationship with multiple stresses, including functional genes (ASP3, ENA5), genes of unknown function (YOL162W, YOR012W), and transcription factors (Crz1p, Tos8p), were selected by a comprehensive strategy from multiple aspects. Through genetic editing based on the CRISPR/Case9 technology, it was demonstrated that expression regulation of each of these six DEGs improved the multiple stress-tolerance and ethanol production of strain KF-7. In particular, the overexpression of ENA5 significantly enhanced the multiple stress-tolerance of not only KF-7 but also E-158. The resulting engineered strain, E-158-ENA5, achieved higher accumulation of ethanol. The ethanol concentrations were 101.67% and 27.31% higher than those of the E-158 when YPD media and industrial feedstocks (straw, molasses, cassava) were fermented, respectively, under stress conditions. Six genes that could be used as the gene targets to improve multiple stress-tolerance and ethanol production capacities of S. cerevisiae were identified for the first time. Compared to the other five DEGs, ENA5 has a more vital function in regulating the multiple stress-tolerance of S. cerevisiae. These findings provide novel insights into the efficient construction of multiple stress-tolerant industrial S. cerevisiae suitable for the
ISSN:2731-3654
2731-3654
1754-6834
DOI:10.1186/s13068-022-02109-x