Loading…

Automated landmarking for palatal shape analysis using geometric deep learning

Objectives To develop and evaluate a geometric deep‐learning network to automatically place seven palatal landmarks on digitized maxillary dental casts. Settings and Sample Population The sample comprised individuals with permanent dentition of various ethnicities. The network was trained from manua...

Full description

Saved in:
Bibliographic Details
Published in:Orthodontics & craniofacial research 2021-12, Vol.24 (S2), p.144-152
Main Authors: Croquet, Balder, Matthews, Harold, Mertens, Jules, Fan, Yi, Nauwelaers, Nele, Mahdi, Soha, Hoskens, Hanne, El Sergani, Ahmed, Xu, Tianmin, Vandermeulen, Dirk, Bronstein, Michael, Marazita, Mary, Weinberg, Seth, Claes, Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4433-4f84d9dd1ae7123ed72822bfd6e1d60754d83121e04100480a7cb6a7122694e93
cites cdi_FETCH-LOGICAL-c4433-4f84d9dd1ae7123ed72822bfd6e1d60754d83121e04100480a7cb6a7122694e93
container_end_page 152
container_issue S2
container_start_page 144
container_title Orthodontics & craniofacial research
container_volume 24
creator Croquet, Balder
Matthews, Harold
Mertens, Jules
Fan, Yi
Nauwelaers, Nele
Mahdi, Soha
Hoskens, Hanne
El Sergani, Ahmed
Xu, Tianmin
Vandermeulen, Dirk
Bronstein, Michael
Marazita, Mary
Weinberg, Seth
Claes, Peter
description Objectives To develop and evaluate a geometric deep‐learning network to automatically place seven palatal landmarks on digitized maxillary dental casts. Settings and Sample Population The sample comprised individuals with permanent dentition of various ethnicities. The network was trained from manual landmark annotations on 732 dental casts and evaluated on 104 dental casts. Materials and Methods A geometric deep‐learning network was developed to hierarchically learn features from point‐clouds representing the 3D surface of each cast. These features predict the locations of seven palatal landmarks. Results Repeat‐measurement reliability was
doi_str_mv 10.1111/ocr.12513
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8818261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545594887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4433-4f84d9dd1ae7123ed72822bfd6e1d60754d83121e04100480a7cb6a7122694e93</originalsourceid><addsrcrecordid>eNp1kV1LwzAUhoMobk4v_ANS8EYv5vLVNL0RZPgFoiB6HbLmdHamTU1aZf_e6HSoYG4STh4ezjkvQvsEn5B4Jq7wJ4SmhG2gIRGYjAXjbHP9ZukA7YSwwJhiSsU2GjBORC54OkS3Z33nat2BSaxuTK39c9XMk9L5pNVWd9om4Um3kOhG22WoQtKHD2AOrobOV0ViANrEgvZNrO-irVLbAHtf9wg9Xpw_TK_GN3eX19Ozm3HBOWNjXkpucmOIhoxQBiajktJZaQQQI3CWciMZoQQwJxhziXVWzISOLBU5h5yN0OnK2_azGkwBTee1Va2v4gRL5XSlfv801ZOau1clJZFUkCg4-hJ499JD6FRdhQJsXAK4Piia8jTNuZRZRA__oAvX-7iOSIloo0zEoUboeEUV3oXgoVw3Q7D6SEnFlNRnSpE9-Nn9mvyOJQKTFfBWWVj-b1J30_uV8h2PXJvI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618223644</pqid></control><display><type>article</type><title>Automated landmarking for palatal shape analysis using geometric deep learning</title><source>Wiley</source><creator>Croquet, Balder ; Matthews, Harold ; Mertens, Jules ; Fan, Yi ; Nauwelaers, Nele ; Mahdi, Soha ; Hoskens, Hanne ; El Sergani, Ahmed ; Xu, Tianmin ; Vandermeulen, Dirk ; Bronstein, Michael ; Marazita, Mary ; Weinberg, Seth ; Claes, Peter</creator><creatorcontrib>Croquet, Balder ; Matthews, Harold ; Mertens, Jules ; Fan, Yi ; Nauwelaers, Nele ; Mahdi, Soha ; Hoskens, Hanne ; El Sergani, Ahmed ; Xu, Tianmin ; Vandermeulen, Dirk ; Bronstein, Michael ; Marazita, Mary ; Weinberg, Seth ; Claes, Peter</creatorcontrib><description>Objectives To develop and evaluate a geometric deep‐learning network to automatically place seven palatal landmarks on digitized maxillary dental casts. Settings and Sample Population The sample comprised individuals with permanent dentition of various ethnicities. The network was trained from manual landmark annotations on 732 dental casts and evaluated on 104 dental casts. Materials and Methods A geometric deep‐learning network was developed to hierarchically learn features from point‐clouds representing the 3D surface of each cast. These features predict the locations of seven palatal landmarks. Results Repeat‐measurement reliability was &lt;0.3 mm for all landmarks on all casts. Accuracy is promising. The proportion of test subjects with errors less than 2 mm was between 0.93 and 0.68, depending on the landmark. Unusually shaped and large palates generate the highest errors. There was no evidence for a difference in mean palatal shape estimated from manual compared to the automatic landmarking. The automatic landmarking reduces sample variation around the mean and reduces measurements of palatal size. Conclusions The automatic landmarking method shows excellent repeatability and promising accuracy, which can streamline patient assessment and research studies. However, landmark indications should be subject to visual quality control.</description><identifier>ISSN: 1601-6335</identifier><identifier>EISSN: 1601-6343</identifier><identifier>DOI: 10.1111/ocr.12513</identifier><identifier>PMID: 34169645</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>3D shape analysis ; automatic landmarking ; Deep Learning ; Dentition ; geometric deep learning ; Humans ; Imaging, Three-Dimensional ; Maxilla ; Palate ; Quality control ; Reproducibility of Results ; Teeth</subject><ispartof>Orthodontics &amp; craniofacial research, 2021-12, Vol.24 (S2), p.144-152</ispartof><rights>2021 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd</rights><rights>2021 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2021 John Wiley &amp; Sons A/S</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4433-4f84d9dd1ae7123ed72822bfd6e1d60754d83121e04100480a7cb6a7122694e93</citedby><cites>FETCH-LOGICAL-c4433-4f84d9dd1ae7123ed72822bfd6e1d60754d83121e04100480a7cb6a7122694e93</cites><orcidid>0000-0002-9539-5193 ; 0000-0001-9489-9819 ; 0000-0002-7680-932X ; 0000-0001-9467-4556 ; 0000-0002-0524-0025</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34169645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Croquet, Balder</creatorcontrib><creatorcontrib>Matthews, Harold</creatorcontrib><creatorcontrib>Mertens, Jules</creatorcontrib><creatorcontrib>Fan, Yi</creatorcontrib><creatorcontrib>Nauwelaers, Nele</creatorcontrib><creatorcontrib>Mahdi, Soha</creatorcontrib><creatorcontrib>Hoskens, Hanne</creatorcontrib><creatorcontrib>El Sergani, Ahmed</creatorcontrib><creatorcontrib>Xu, Tianmin</creatorcontrib><creatorcontrib>Vandermeulen, Dirk</creatorcontrib><creatorcontrib>Bronstein, Michael</creatorcontrib><creatorcontrib>Marazita, Mary</creatorcontrib><creatorcontrib>Weinberg, Seth</creatorcontrib><creatorcontrib>Claes, Peter</creatorcontrib><title>Automated landmarking for palatal shape analysis using geometric deep learning</title><title>Orthodontics &amp; craniofacial research</title><addtitle>Orthod Craniofac Res</addtitle><description>Objectives To develop and evaluate a geometric deep‐learning network to automatically place seven palatal landmarks on digitized maxillary dental casts. Settings and Sample Population The sample comprised individuals with permanent dentition of various ethnicities. The network was trained from manual landmark annotations on 732 dental casts and evaluated on 104 dental casts. Materials and Methods A geometric deep‐learning network was developed to hierarchically learn features from point‐clouds representing the 3D surface of each cast. These features predict the locations of seven palatal landmarks. Results Repeat‐measurement reliability was &lt;0.3 mm for all landmarks on all casts. Accuracy is promising. The proportion of test subjects with errors less than 2 mm was between 0.93 and 0.68, depending on the landmark. Unusually shaped and large palates generate the highest errors. There was no evidence for a difference in mean palatal shape estimated from manual compared to the automatic landmarking. The automatic landmarking reduces sample variation around the mean and reduces measurements of palatal size. Conclusions The automatic landmarking method shows excellent repeatability and promising accuracy, which can streamline patient assessment and research studies. However, landmark indications should be subject to visual quality control.</description><subject>3D shape analysis</subject><subject>automatic landmarking</subject><subject>Deep Learning</subject><subject>Dentition</subject><subject>geometric deep learning</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional</subject><subject>Maxilla</subject><subject>Palate</subject><subject>Quality control</subject><subject>Reproducibility of Results</subject><subject>Teeth</subject><issn>1601-6335</issn><issn>1601-6343</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kV1LwzAUhoMobk4v_ANS8EYv5vLVNL0RZPgFoiB6HbLmdHamTU1aZf_e6HSoYG4STh4ezjkvQvsEn5B4Jq7wJ4SmhG2gIRGYjAXjbHP9ZukA7YSwwJhiSsU2GjBORC54OkS3Z33nat2BSaxuTK39c9XMk9L5pNVWd9om4Um3kOhG22WoQtKHD2AOrobOV0ViANrEgvZNrO-irVLbAHtf9wg9Xpw_TK_GN3eX19Ozm3HBOWNjXkpucmOIhoxQBiajktJZaQQQI3CWciMZoQQwJxhziXVWzISOLBU5h5yN0OnK2_azGkwBTee1Va2v4gRL5XSlfv801ZOau1clJZFUkCg4-hJ499JD6FRdhQJsXAK4Piia8jTNuZRZRA__oAvX-7iOSIloo0zEoUboeEUV3oXgoVw3Q7D6SEnFlNRnSpE9-Nn9mvyOJQKTFfBWWVj-b1J30_uV8h2PXJvI</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Croquet, Balder</creator><creator>Matthews, Harold</creator><creator>Mertens, Jules</creator><creator>Fan, Yi</creator><creator>Nauwelaers, Nele</creator><creator>Mahdi, Soha</creator><creator>Hoskens, Hanne</creator><creator>El Sergani, Ahmed</creator><creator>Xu, Tianmin</creator><creator>Vandermeulen, Dirk</creator><creator>Bronstein, Michael</creator><creator>Marazita, Mary</creator><creator>Weinberg, Seth</creator><creator>Claes, Peter</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9539-5193</orcidid><orcidid>https://orcid.org/0000-0001-9489-9819</orcidid><orcidid>https://orcid.org/0000-0002-7680-932X</orcidid><orcidid>https://orcid.org/0000-0001-9467-4556</orcidid><orcidid>https://orcid.org/0000-0002-0524-0025</orcidid></search><sort><creationdate>202112</creationdate><title>Automated landmarking for palatal shape analysis using geometric deep learning</title><author>Croquet, Balder ; Matthews, Harold ; Mertens, Jules ; Fan, Yi ; Nauwelaers, Nele ; Mahdi, Soha ; Hoskens, Hanne ; El Sergani, Ahmed ; Xu, Tianmin ; Vandermeulen, Dirk ; Bronstein, Michael ; Marazita, Mary ; Weinberg, Seth ; Claes, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4433-4f84d9dd1ae7123ed72822bfd6e1d60754d83121e04100480a7cb6a7122694e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D shape analysis</topic><topic>automatic landmarking</topic><topic>Deep Learning</topic><topic>Dentition</topic><topic>geometric deep learning</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional</topic><topic>Maxilla</topic><topic>Palate</topic><topic>Quality control</topic><topic>Reproducibility of Results</topic><topic>Teeth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Croquet, Balder</creatorcontrib><creatorcontrib>Matthews, Harold</creatorcontrib><creatorcontrib>Mertens, Jules</creatorcontrib><creatorcontrib>Fan, Yi</creatorcontrib><creatorcontrib>Nauwelaers, Nele</creatorcontrib><creatorcontrib>Mahdi, Soha</creatorcontrib><creatorcontrib>Hoskens, Hanne</creatorcontrib><creatorcontrib>El Sergani, Ahmed</creatorcontrib><creatorcontrib>Xu, Tianmin</creatorcontrib><creatorcontrib>Vandermeulen, Dirk</creatorcontrib><creatorcontrib>Bronstein, Michael</creatorcontrib><creatorcontrib>Marazita, Mary</creatorcontrib><creatorcontrib>Weinberg, Seth</creatorcontrib><creatorcontrib>Claes, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Orthodontics &amp; craniofacial research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Croquet, Balder</au><au>Matthews, Harold</au><au>Mertens, Jules</au><au>Fan, Yi</au><au>Nauwelaers, Nele</au><au>Mahdi, Soha</au><au>Hoskens, Hanne</au><au>El Sergani, Ahmed</au><au>Xu, Tianmin</au><au>Vandermeulen, Dirk</au><au>Bronstein, Michael</au><au>Marazita, Mary</au><au>Weinberg, Seth</au><au>Claes, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated landmarking for palatal shape analysis using geometric deep learning</atitle><jtitle>Orthodontics &amp; craniofacial research</jtitle><addtitle>Orthod Craniofac Res</addtitle><date>2021-12</date><risdate>2021</risdate><volume>24</volume><issue>S2</issue><spage>144</spage><epage>152</epage><pages>144-152</pages><issn>1601-6335</issn><eissn>1601-6343</eissn><abstract>Objectives To develop and evaluate a geometric deep‐learning network to automatically place seven palatal landmarks on digitized maxillary dental casts. Settings and Sample Population The sample comprised individuals with permanent dentition of various ethnicities. The network was trained from manual landmark annotations on 732 dental casts and evaluated on 104 dental casts. Materials and Methods A geometric deep‐learning network was developed to hierarchically learn features from point‐clouds representing the 3D surface of each cast. These features predict the locations of seven palatal landmarks. Results Repeat‐measurement reliability was &lt;0.3 mm for all landmarks on all casts. Accuracy is promising. The proportion of test subjects with errors less than 2 mm was between 0.93 and 0.68, depending on the landmark. Unusually shaped and large palates generate the highest errors. There was no evidence for a difference in mean palatal shape estimated from manual compared to the automatic landmarking. The automatic landmarking reduces sample variation around the mean and reduces measurements of palatal size. Conclusions The automatic landmarking method shows excellent repeatability and promising accuracy, which can streamline patient assessment and research studies. However, landmark indications should be subject to visual quality control.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34169645</pmid><doi>10.1111/ocr.12513</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9539-5193</orcidid><orcidid>https://orcid.org/0000-0001-9489-9819</orcidid><orcidid>https://orcid.org/0000-0002-7680-932X</orcidid><orcidid>https://orcid.org/0000-0001-9467-4556</orcidid><orcidid>https://orcid.org/0000-0002-0524-0025</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1601-6335
ispartof Orthodontics & craniofacial research, 2021-12, Vol.24 (S2), p.144-152
issn 1601-6335
1601-6343
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8818261
source Wiley
subjects 3D shape analysis
automatic landmarking
Deep Learning
Dentition
geometric deep learning
Humans
Imaging, Three-Dimensional
Maxilla
Palate
Quality control
Reproducibility of Results
Teeth
title Automated landmarking for palatal shape analysis using geometric deep learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T09%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20landmarking%20for%20palatal%20shape%20analysis%20using%20geometric%20deep%20learning&rft.jtitle=Orthodontics%20&%20craniofacial%20research&rft.au=Croquet,%20Balder&rft.date=2021-12&rft.volume=24&rft.issue=S2&rft.spage=144&rft.epage=152&rft.pages=144-152&rft.issn=1601-6335&rft.eissn=1601-6343&rft_id=info:doi/10.1111/ocr.12513&rft_dat=%3Cproquest_pubme%3E2545594887%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4433-4f84d9dd1ae7123ed72822bfd6e1d60754d83121e04100480a7cb6a7122694e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2618223644&rft_id=info:pmid/34169645&rfr_iscdi=true