Loading…

Ideal observer analysis for continuous tracking experiments

Continuous tracking is a newly developed technique that allows fast and efficient data acquisition by asking participants to "track" a stimulus varying in some property (usually position in space). Tracking is a promising paradigm for the investigation of dynamic features of perception and...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vision (Charlottesville, Va.) Va.), 2022-02, Vol.22 (2), p.3-3
Main Authors: Ambrosi, Pierfrancesco, Burr, David Charles, Cicchini, Guido Marco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-500ded044f4000b7fc19ecd3dbcd76c7281791d95fa052eed83040193f1750103
cites cdi_FETCH-LOGICAL-c378t-500ded044f4000b7fc19ecd3dbcd76c7281791d95fa052eed83040193f1750103
container_end_page 3
container_issue 2
container_start_page 3
container_title Journal of vision (Charlottesville, Va.)
container_volume 22
creator Ambrosi, Pierfrancesco
Burr, David Charles
Cicchini, Guido Marco
description Continuous tracking is a newly developed technique that allows fast and efficient data acquisition by asking participants to "track" a stimulus varying in some property (usually position in space). Tracking is a promising paradigm for the investigation of dynamic features of perception and could be particularly well suited for testing ecologically relevant situations difficult to study with classical psychophysical paradigms. The high rate of data collection may be useful in studies on clinical populations and children, who are unable to undergo long testing sessions. In this study, we designed tracking experiments with two novel stimulus features, numerosity and size, proving the feasibility of the technique outside standard object tracking. We went on to develop an ideal observer model that characterizes the results in terms of efficiency of conversion of stimulus strength into responses, and identification of early and late noise sources. Our ideal observer closely modeled results from human participants, providing a generalized framework for the interpretation of tracking data. The proposed model allows to use the tracking paradigm in various perceptual domains, and to study the divergence of human participants from ideal behavior.
doi_str_mv 10.1167/jov.22.2.3
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8819311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624653937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-500ded044f4000b7fc19ecd3dbcd76c7281791d95fa052eed83040193f1750103</originalsourceid><addsrcrecordid>eNpVkF9LwzAUxYMobk5f_ADSRxE6b5K2aREEGf4ZDHzR55Amt7Oza2bSDvftjWyO-XQv3B_nnHsIuaQwpjQTtwu7HjM2ZmN-RIY05UkseMaOD_YBOfN-AcAgBXpKBjylwEWaDcnd1KBqIlt6dGt0kWpVs_G1jyrrIm3brm572_uoc0p_1u08wu8VunqJbefPyUmlGo8Xuzki70-Pb5OXePb6PJ08zGLNRd7FKYBBA0lSJQBQikrTArXhptRGZFqwnIqCmiKtFKQM0eQcEqAFr6gIcYGPyP1Wd9WXSzQ6eDvVyFWIodxGWlXL_5e2_pBzu5Z5HlQoDQLXOwFnv3r0nVzWXmPTqBbDc5JlLMlSXnAR0Jstqp313mG1t6Egf9uWoW3JmGSSB_jqMNge_auX_wBcq3wX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624653937</pqid></control><display><type>article</type><title>Ideal observer analysis for continuous tracking experiments</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><creator>Ambrosi, Pierfrancesco ; Burr, David Charles ; Cicchini, Guido Marco</creator><creatorcontrib>Ambrosi, Pierfrancesco ; Burr, David Charles ; Cicchini, Guido Marco</creatorcontrib><description>Continuous tracking is a newly developed technique that allows fast and efficient data acquisition by asking participants to "track" a stimulus varying in some property (usually position in space). Tracking is a promising paradigm for the investigation of dynamic features of perception and could be particularly well suited for testing ecologically relevant situations difficult to study with classical psychophysical paradigms. The high rate of data collection may be useful in studies on clinical populations and children, who are unable to undergo long testing sessions. In this study, we designed tracking experiments with two novel stimulus features, numerosity and size, proving the feasibility of the technique outside standard object tracking. We went on to develop an ideal observer model that characterizes the results in terms of efficiency of conversion of stimulus strength into responses, and identification of early and late noise sources. Our ideal observer closely modeled results from human participants, providing a generalized framework for the interpretation of tracking data. The proposed model allows to use the tracking paradigm in various perceptual domains, and to study the divergence of human participants from ideal behavior.</description><identifier>ISSN: 1534-7362</identifier><identifier>EISSN: 1534-7362</identifier><identifier>DOI: 10.1167/jov.22.2.3</identifier><identifier>PMID: 35103756</identifier><language>eng</language><publisher>United States: The Association for Research in Vision and Ophthalmology</publisher><subject>Child ; Humans ; Models, Psychological ; Motion Perception ; Perceptual Masking ; Space Perception ; Visual Perception - physiology</subject><ispartof>Journal of vision (Charlottesville, Va.), 2022-02, Vol.22 (2), p.3-3</ispartof><rights>Copyright 2022 The Authors 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-500ded044f4000b7fc19ecd3dbcd76c7281791d95fa052eed83040193f1750103</citedby><cites>FETCH-LOGICAL-c378t-500ded044f4000b7fc19ecd3dbcd76c7281791d95fa052eed83040193f1750103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8819311/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8819311/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35103756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ambrosi, Pierfrancesco</creatorcontrib><creatorcontrib>Burr, David Charles</creatorcontrib><creatorcontrib>Cicchini, Guido Marco</creatorcontrib><title>Ideal observer analysis for continuous tracking experiments</title><title>Journal of vision (Charlottesville, Va.)</title><addtitle>J Vis</addtitle><description>Continuous tracking is a newly developed technique that allows fast and efficient data acquisition by asking participants to "track" a stimulus varying in some property (usually position in space). Tracking is a promising paradigm for the investigation of dynamic features of perception and could be particularly well suited for testing ecologically relevant situations difficult to study with classical psychophysical paradigms. The high rate of data collection may be useful in studies on clinical populations and children, who are unable to undergo long testing sessions. In this study, we designed tracking experiments with two novel stimulus features, numerosity and size, proving the feasibility of the technique outside standard object tracking. We went on to develop an ideal observer model that characterizes the results in terms of efficiency of conversion of stimulus strength into responses, and identification of early and late noise sources. Our ideal observer closely modeled results from human participants, providing a generalized framework for the interpretation of tracking data. The proposed model allows to use the tracking paradigm in various perceptual domains, and to study the divergence of human participants from ideal behavior.</description><subject>Child</subject><subject>Humans</subject><subject>Models, Psychological</subject><subject>Motion Perception</subject><subject>Perceptual Masking</subject><subject>Space Perception</subject><subject>Visual Perception - physiology</subject><issn>1534-7362</issn><issn>1534-7362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkF9LwzAUxYMobk5f_ADSRxE6b5K2aREEGf4ZDHzR55Amt7Oza2bSDvftjWyO-XQv3B_nnHsIuaQwpjQTtwu7HjM2ZmN-RIY05UkseMaOD_YBOfN-AcAgBXpKBjylwEWaDcnd1KBqIlt6dGt0kWpVs_G1jyrrIm3brm572_uoc0p_1u08wu8VunqJbefPyUmlGo8Xuzki70-Pb5OXePb6PJ08zGLNRd7FKYBBA0lSJQBQikrTArXhptRGZFqwnIqCmiKtFKQM0eQcEqAFr6gIcYGPyP1Wd9WXSzQ6eDvVyFWIodxGWlXL_5e2_pBzu5Z5HlQoDQLXOwFnv3r0nVzWXmPTqBbDc5JlLMlSXnAR0Jstqp313mG1t6Egf9uWoW3JmGSSB_jqMNge_auX_wBcq3wX</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Ambrosi, Pierfrancesco</creator><creator>Burr, David Charles</creator><creator>Cicchini, Guido Marco</creator><general>The Association for Research in Vision and Ophthalmology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220201</creationdate><title>Ideal observer analysis for continuous tracking experiments</title><author>Ambrosi, Pierfrancesco ; Burr, David Charles ; Cicchini, Guido Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-500ded044f4000b7fc19ecd3dbcd76c7281791d95fa052eed83040193f1750103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Child</topic><topic>Humans</topic><topic>Models, Psychological</topic><topic>Motion Perception</topic><topic>Perceptual Masking</topic><topic>Space Perception</topic><topic>Visual Perception - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ambrosi, Pierfrancesco</creatorcontrib><creatorcontrib>Burr, David Charles</creatorcontrib><creatorcontrib>Cicchini, Guido Marco</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of vision (Charlottesville, Va.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ambrosi, Pierfrancesco</au><au>Burr, David Charles</au><au>Cicchini, Guido Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ideal observer analysis for continuous tracking experiments</atitle><jtitle>Journal of vision (Charlottesville, Va.)</jtitle><addtitle>J Vis</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>22</volume><issue>2</issue><spage>3</spage><epage>3</epage><pages>3-3</pages><issn>1534-7362</issn><eissn>1534-7362</eissn><abstract>Continuous tracking is a newly developed technique that allows fast and efficient data acquisition by asking participants to "track" a stimulus varying in some property (usually position in space). Tracking is a promising paradigm for the investigation of dynamic features of perception and could be particularly well suited for testing ecologically relevant situations difficult to study with classical psychophysical paradigms. The high rate of data collection may be useful in studies on clinical populations and children, who are unable to undergo long testing sessions. In this study, we designed tracking experiments with two novel stimulus features, numerosity and size, proving the feasibility of the technique outside standard object tracking. We went on to develop an ideal observer model that characterizes the results in terms of efficiency of conversion of stimulus strength into responses, and identification of early and late noise sources. Our ideal observer closely modeled results from human participants, providing a generalized framework for the interpretation of tracking data. The proposed model allows to use the tracking paradigm in various perceptual domains, and to study the divergence of human participants from ideal behavior.</abstract><cop>United States</cop><pub>The Association for Research in Vision and Ophthalmology</pub><pmid>35103756</pmid><doi>10.1167/jov.22.2.3</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-7362
ispartof Journal of vision (Charlottesville, Va.), 2022-02, Vol.22 (2), p.3-3
issn 1534-7362
1534-7362
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8819311
source DOAJ Directory of Open Access Journals; PubMed Central
subjects Child
Humans
Models, Psychological
Motion Perception
Perceptual Masking
Space Perception
Visual Perception - physiology
title Ideal observer analysis for continuous tracking experiments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A19%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ideal%20observer%20analysis%20for%20continuous%20tracking%20experiments&rft.jtitle=Journal%20of%20vision%20(Charlottesville,%20Va.)&rft.au=Ambrosi,%20Pierfrancesco&rft.date=2022-02-01&rft.volume=22&rft.issue=2&rft.spage=3&rft.epage=3&rft.pages=3-3&rft.issn=1534-7362&rft.eissn=1534-7362&rft_id=info:doi/10.1167/jov.22.2.3&rft_dat=%3Cproquest_pubme%3E2624653937%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-500ded044f4000b7fc19ecd3dbcd76c7281791d95fa052eed83040193f1750103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2624653937&rft_id=info:pmid/35103756&rfr_iscdi=true