Loading…
UNFERTILIZED EMBRYO SAC 12 phosphorylation plays a crucial role in conferring salt tolerance
Arabidopsis (Arabidopsis thaliana) UNFERTILIZED EMBRYO SAC 12 (AtUNE12) belongs to the basic helix-loop-helix DNA-binding superfamily of proteins. However, its function is not well known. Here, we found that AtUNE12 plays an important role in mediating salt tolerance. AtUNE12 is a transcriptional ac...
Saved in:
Published in: | Plant physiology (Bethesda) 2022-02, Vol.188 (2), p.1385-1401 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Arabidopsis (Arabidopsis thaliana) UNFERTILIZED EMBRYO SAC 12 (AtUNE12) belongs to the basic helix-loop-helix DNA-binding superfamily of proteins. However, its function is not well known. Here, we found that AtUNE12 plays an important role in mediating salt tolerance. AtUNE12 is a transcriptional activator located in the nucleus whose expression is induced by NaCl, mannitol, and abscisic acid. In addition to binding to the G-box "CACGTG", AtUNE12 also binds to the low temperature responsive element 15 (LTRE15) "CCGAC". Furthermore, the serine residue at position 108 of AtUNE12 is phosphorylated during the salt stress response, enabling AtUNE12 to trigger gene expression by binding to G-box and/or LTRE15 motifs. Phosphorylated AtUNE12 regulates the expression of the genes involved in ion transport leading to reduced Na+ accumulation and K+ loss. At the same time, phosphorylation of AtUNE12 also induces the expression of AtMYB61 to decrease stomatal aperture, leading to a reduced transpiration rate. Overall, AtUNE12 serves as a transcriptional activator that is induced and phosphorylated upon salt stress, and the induction and phosphorylation of AtUNE12 in turn activate the salt-overly-sensitive pathway and decrease the stomatal aperture, enabling improved salt tolerance. |
---|---|
ISSN: | 0032-0889 1532-2548 |
DOI: | 10.1093/plphys/kiab549 |