Loading…
SARS-CoV-2 rate of spread in and across tissue, groundwater and soil: A meshless algorithm for the fractional diffusion equation
The epidemiological aspects of the viral dynamic of the SARS-CoV-2 have become increasingly crucial due to major questions and uncertainties around the unaddressed issues of how corpse burial or the disposal of contaminated waste impacts nearby soil and groundwater. Here, a theoretical framework bas...
Saved in:
Published in: | Engineering analysis with boundary elements 2022-05, Vol.138, p.108-117 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c483t-41ee2f7e1b6010b9b5aa617b7bf4eaa56db5ef1fd979b3925e4d928d2be895913 |
---|---|
cites | cdi_FETCH-LOGICAL-c483t-41ee2f7e1b6010b9b5aa617b7bf4eaa56db5ef1fd979b3925e4d928d2be895913 |
container_end_page | 117 |
container_issue | |
container_start_page | 108 |
container_title | Engineering analysis with boundary elements |
container_volume | 138 |
creator | Bavi, O. Hosseininia, M. Heydari, M.H. Bavi, N. |
description | The epidemiological aspects of the viral dynamic of the SARS-CoV-2 have become increasingly crucial due to major questions and uncertainties around the unaddressed issues of how corpse burial or the disposal of contaminated waste impacts nearby soil and groundwater. Here, a theoretical framework base on a meshless algorithm using the moving least squares (MLS) shape functions is adopted for solving the time-fractional model of the viral diffusion in and across three different environments including water, tissue, and soil. Our computations predict that by considering the α (order of fractional derivative) best fit to experimental data, the virus has a traveling distance of 1mm in water after 22, regardless of the source of contamination (e.g., from tissue or soil). The outcomes and extrapolations of our study are fundamental for providing valuable benchmarks for future experimentation on this topic and ultimately for the accurate description of viral spread across different environments. In addition to COVID-19 relief efforts, our methodology can be adapted for a wide range of applications such as studying virus ecology and genomic reservoirs in freshwater and marine environments. |
doi_str_mv | 10.1016/j.enganabound.2022.01.018 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8825624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955799722000182</els_id><sourcerecordid>2628676473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-41ee2f7e1b6010b9b5aa617b7bf4eaa56db5ef1fd979b3925e4d928d2be895913</originalsourceid><addsrcrecordid>eNqNkU-LFDEQxYMo7rj6FSTePNhjku50Eg_CMPgPFgRXxVtIOpWZDD3JbNK94s2PbmZnXdabUJCQ-tV7oR5CLyhZUkL717slxI2JxqY5uiUjjC0JrSUfoAWVom2oEj8eogVRnDdCKXGGnpSyI4S2hPSP0VnLKW9bKRfo9-Xqy2WzTt8bhrOZACePyyGDcThEbKLDZsipFDyFUmZ4hTf5aPqzovmmXVIY3-AV3kPZjlBBM25SDtN2j33KeNoC9tkMU0jRjNgF7-dS7xiuZnN8fIoeeTMWeHZ7nqNv7999XX9sLj5_-LReXTRDJ9up6SgA8wKo7QklVlluTE-FFdZ3YAzvneXgqXdKKNsqxqFziknHLEjFFW3P0duT7mG2e3ADxCmbUR9y2Jv8SycT9L-dGLZ6k661lIz3rKsCL28FcrqaoUx6H8oA42gipLlo1jPZi74TbUXVCb1ZXQZ_Z0OJPiaod_pegvqYoCa0lqyzz-__827yb2QVWJ8AqNu6DpB1GQLEAVzIMEzapfAfNn8AJIS2Mw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628676473</pqid></control><display><type>article</type><title>SARS-CoV-2 rate of spread in and across tissue, groundwater and soil: A meshless algorithm for the fractional diffusion equation</title><source>Elsevier</source><creator>Bavi, O. ; Hosseininia, M. ; Heydari, M.H. ; Bavi, N.</creator><creatorcontrib>Bavi, O. ; Hosseininia, M. ; Heydari, M.H. ; Bavi, N.</creatorcontrib><description>The epidemiological aspects of the viral dynamic of the SARS-CoV-2 have become increasingly crucial due to major questions and uncertainties around the unaddressed issues of how corpse burial or the disposal of contaminated waste impacts nearby soil and groundwater. Here, a theoretical framework base on a meshless algorithm using the moving least squares (MLS) shape functions is adopted for solving the time-fractional model of the viral diffusion in and across three different environments including water, tissue, and soil. Our computations predict that by considering the α (order of fractional derivative) best fit to experimental data, the virus has a traveling distance of 1mm in water after 22, regardless of the source of contamination (e.g., from tissue or soil). The outcomes and extrapolations of our study are fundamental for providing valuable benchmarks for future experimentation on this topic and ultimately for the accurate description of viral spread across different environments. In addition to COVID-19 relief efforts, our methodology can be adapted for a wide range of applications such as studying virus ecology and genomic reservoirs in freshwater and marine environments.</description><identifier>ISSN: 0955-7997</identifier><identifier>EISSN: 1873-197X</identifier><identifier>EISSN: 0955-7997</identifier><identifier>DOI: 10.1016/j.enganabound.2022.01.018</identifier><identifier>PMID: 35153388</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Coronavirus ; Fractional diffusion equation ; Moving least squares (MLS) shape functions ; SARS-CoV-2 ; Viral dynamics ; Virus diffusion coefficients</subject><ispartof>Engineering analysis with boundary elements, 2022-05, Vol.138, p.108-117</ispartof><rights>2022 Elsevier Ltd</rights><rights>2022 Elsevier Ltd. All rights reserved.</rights><rights>2022 Elsevier Ltd. All rights reserved. 2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-41ee2f7e1b6010b9b5aa617b7bf4eaa56db5ef1fd979b3925e4d928d2be895913</citedby><cites>FETCH-LOGICAL-c483t-41ee2f7e1b6010b9b5aa617b7bf4eaa56db5ef1fd979b3925e4d928d2be895913</cites><orcidid>0000-0001-6764-4394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35153388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bavi, O.</creatorcontrib><creatorcontrib>Hosseininia, M.</creatorcontrib><creatorcontrib>Heydari, M.H.</creatorcontrib><creatorcontrib>Bavi, N.</creatorcontrib><title>SARS-CoV-2 rate of spread in and across tissue, groundwater and soil: A meshless algorithm for the fractional diffusion equation</title><title>Engineering analysis with boundary elements</title><addtitle>Eng Anal Bound Elem</addtitle><description>The epidemiological aspects of the viral dynamic of the SARS-CoV-2 have become increasingly crucial due to major questions and uncertainties around the unaddressed issues of how corpse burial or the disposal of contaminated waste impacts nearby soil and groundwater. Here, a theoretical framework base on a meshless algorithm using the moving least squares (MLS) shape functions is adopted for solving the time-fractional model of the viral diffusion in and across three different environments including water, tissue, and soil. Our computations predict that by considering the α (order of fractional derivative) best fit to experimental data, the virus has a traveling distance of 1mm in water after 22, regardless of the source of contamination (e.g., from tissue or soil). The outcomes and extrapolations of our study are fundamental for providing valuable benchmarks for future experimentation on this topic and ultimately for the accurate description of viral spread across different environments. In addition to COVID-19 relief efforts, our methodology can be adapted for a wide range of applications such as studying virus ecology and genomic reservoirs in freshwater and marine environments.</description><subject>Coronavirus</subject><subject>Fractional diffusion equation</subject><subject>Moving least squares (MLS) shape functions</subject><subject>SARS-CoV-2</subject><subject>Viral dynamics</subject><subject>Virus diffusion coefficients</subject><issn>0955-7997</issn><issn>1873-197X</issn><issn>0955-7997</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkU-LFDEQxYMo7rj6FSTePNhjku50Eg_CMPgPFgRXxVtIOpWZDD3JbNK94s2PbmZnXdabUJCQ-tV7oR5CLyhZUkL717slxI2JxqY5uiUjjC0JrSUfoAWVom2oEj8eogVRnDdCKXGGnpSyI4S2hPSP0VnLKW9bKRfo9-Xqy2WzTt8bhrOZACePyyGDcThEbKLDZsipFDyFUmZ4hTf5aPqzovmmXVIY3-AV3kPZjlBBM25SDtN2j33KeNoC9tkMU0jRjNgF7-dS7xiuZnN8fIoeeTMWeHZ7nqNv7999XX9sLj5_-LReXTRDJ9up6SgA8wKo7QklVlluTE-FFdZ3YAzvneXgqXdKKNsqxqFziknHLEjFFW3P0duT7mG2e3ADxCmbUR9y2Jv8SycT9L-dGLZ6k661lIz3rKsCL28FcrqaoUx6H8oA42gipLlo1jPZi74TbUXVCb1ZXQZ_Z0OJPiaod_pegvqYoCa0lqyzz-__827yb2QVWJ8AqNu6DpB1GQLEAVzIMEzapfAfNn8AJIS2Mw</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Bavi, O.</creator><creator>Hosseininia, M.</creator><creator>Heydari, M.H.</creator><creator>Bavi, N.</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6764-4394</orcidid></search><sort><creationdate>20220501</creationdate><title>SARS-CoV-2 rate of spread in and across tissue, groundwater and soil: A meshless algorithm for the fractional diffusion equation</title><author>Bavi, O. ; Hosseininia, M. ; Heydari, M.H. ; Bavi, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-41ee2f7e1b6010b9b5aa617b7bf4eaa56db5ef1fd979b3925e4d928d2be895913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coronavirus</topic><topic>Fractional diffusion equation</topic><topic>Moving least squares (MLS) shape functions</topic><topic>SARS-CoV-2</topic><topic>Viral dynamics</topic><topic>Virus diffusion coefficients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bavi, O.</creatorcontrib><creatorcontrib>Hosseininia, M.</creatorcontrib><creatorcontrib>Heydari, M.H.</creatorcontrib><creatorcontrib>Bavi, N.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Engineering analysis with boundary elements</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bavi, O.</au><au>Hosseininia, M.</au><au>Heydari, M.H.</au><au>Bavi, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SARS-CoV-2 rate of spread in and across tissue, groundwater and soil: A meshless algorithm for the fractional diffusion equation</atitle><jtitle>Engineering analysis with boundary elements</jtitle><addtitle>Eng Anal Bound Elem</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>138</volume><spage>108</spage><epage>117</epage><pages>108-117</pages><issn>0955-7997</issn><eissn>1873-197X</eissn><eissn>0955-7997</eissn><abstract>The epidemiological aspects of the viral dynamic of the SARS-CoV-2 have become increasingly crucial due to major questions and uncertainties around the unaddressed issues of how corpse burial or the disposal of contaminated waste impacts nearby soil and groundwater. Here, a theoretical framework base on a meshless algorithm using the moving least squares (MLS) shape functions is adopted for solving the time-fractional model of the viral diffusion in and across three different environments including water, tissue, and soil. Our computations predict that by considering the α (order of fractional derivative) best fit to experimental data, the virus has a traveling distance of 1mm in water after 22, regardless of the source of contamination (e.g., from tissue or soil). The outcomes and extrapolations of our study are fundamental for providing valuable benchmarks for future experimentation on this topic and ultimately for the accurate description of viral spread across different environments. In addition to COVID-19 relief efforts, our methodology can be adapted for a wide range of applications such as studying virus ecology and genomic reservoirs in freshwater and marine environments.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>35153388</pmid><doi>10.1016/j.enganabound.2022.01.018</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6764-4394</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0955-7997 |
ispartof | Engineering analysis with boundary elements, 2022-05, Vol.138, p.108-117 |
issn | 0955-7997 1873-197X 0955-7997 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8825624 |
source | Elsevier |
subjects | Coronavirus Fractional diffusion equation Moving least squares (MLS) shape functions SARS-CoV-2 Viral dynamics Virus diffusion coefficients |
title | SARS-CoV-2 rate of spread in and across tissue, groundwater and soil: A meshless algorithm for the fractional diffusion equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A33%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SARS-CoV-2%20rate%20of%20spread%20in%20and%20across%20tissue,%20groundwater%20and%20soil:%20A%20meshless%20algorithm%20for%20the%20fractional%20diffusion%20equation&rft.jtitle=Engineering%20analysis%20with%20boundary%20elements&rft.au=Bavi,%20O.&rft.date=2022-05-01&rft.volume=138&rft.spage=108&rft.epage=117&rft.pages=108-117&rft.issn=0955-7997&rft.eissn=1873-197X&rft_id=info:doi/10.1016/j.enganabound.2022.01.018&rft_dat=%3Cproquest_pubme%3E2628676473%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c483t-41ee2f7e1b6010b9b5aa617b7bf4eaa56db5ef1fd979b3925e4d928d2be895913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2628676473&rft_id=info:pmid/35153388&rfr_iscdi=true |