Loading…

SARS-CoV-2 rate of spread in and across tissue, groundwater and soil: A meshless algorithm for the fractional diffusion equation

The epidemiological aspects of the viral dynamic of the SARS-CoV-2 have become increasingly crucial due to major questions and uncertainties around the unaddressed issues of how corpse burial or the disposal of contaminated waste impacts nearby soil and groundwater. Here, a theoretical framework bas...

Full description

Saved in:
Bibliographic Details
Published in:Engineering analysis with boundary elements 2022-05, Vol.138, p.108-117
Main Authors: Bavi, O., Hosseininia, M., Heydari, M.H., Bavi, N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c483t-41ee2f7e1b6010b9b5aa617b7bf4eaa56db5ef1fd979b3925e4d928d2be895913
cites cdi_FETCH-LOGICAL-c483t-41ee2f7e1b6010b9b5aa617b7bf4eaa56db5ef1fd979b3925e4d928d2be895913
container_end_page 117
container_issue
container_start_page 108
container_title Engineering analysis with boundary elements
container_volume 138
creator Bavi, O.
Hosseininia, M.
Heydari, M.H.
Bavi, N.
description The epidemiological aspects of the viral dynamic of the SARS-CoV-2 have become increasingly crucial due to major questions and uncertainties around the unaddressed issues of how corpse burial or the disposal of contaminated waste impacts nearby soil and groundwater. Here, a theoretical framework base on a meshless algorithm using the moving least squares (MLS) shape functions is adopted for solving the time-fractional model of the viral diffusion in and across three different environments including water, tissue, and soil. Our computations predict that by considering the α (order of fractional derivative) best fit to experimental data, the virus has a traveling distance of 1mm in water after 22, regardless of the source of contamination (e.g., from tissue or soil). The outcomes and extrapolations of our study are fundamental for providing valuable benchmarks for future experimentation on this topic and ultimately for the accurate description of viral spread across different environments. In addition to COVID-19 relief efforts, our methodology can be adapted for a wide range of applications such as studying virus ecology and genomic reservoirs in freshwater and marine environments.
doi_str_mv 10.1016/j.enganabound.2022.01.018
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8825624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955799722000182</els_id><sourcerecordid>2628676473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-41ee2f7e1b6010b9b5aa617b7bf4eaa56db5ef1fd979b3925e4d928d2be895913</originalsourceid><addsrcrecordid>eNqNkU-LFDEQxYMo7rj6FSTePNhjku50Eg_CMPgPFgRXxVtIOpWZDD3JbNK94s2PbmZnXdabUJCQ-tV7oR5CLyhZUkL717slxI2JxqY5uiUjjC0JrSUfoAWVom2oEj8eogVRnDdCKXGGnpSyI4S2hPSP0VnLKW9bKRfo9-Xqy2WzTt8bhrOZACePyyGDcThEbKLDZsipFDyFUmZ4hTf5aPqzovmmXVIY3-AV3kPZjlBBM25SDtN2j33KeNoC9tkMU0jRjNgF7-dS7xiuZnN8fIoeeTMWeHZ7nqNv7999XX9sLj5_-LReXTRDJ9up6SgA8wKo7QklVlluTE-FFdZ3YAzvneXgqXdKKNsqxqFziknHLEjFFW3P0duT7mG2e3ADxCmbUR9y2Jv8SycT9L-dGLZ6k661lIz3rKsCL28FcrqaoUx6H8oA42gipLlo1jPZi74TbUXVCb1ZXQZ_Z0OJPiaod_pegvqYoCa0lqyzz-__827yb2QVWJ8AqNu6DpB1GQLEAVzIMEzapfAfNn8AJIS2Mw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628676473</pqid></control><display><type>article</type><title>SARS-CoV-2 rate of spread in and across tissue, groundwater and soil: A meshless algorithm for the fractional diffusion equation</title><source>Elsevier</source><creator>Bavi, O. ; Hosseininia, M. ; Heydari, M.H. ; Bavi, N.</creator><creatorcontrib>Bavi, O. ; Hosseininia, M. ; Heydari, M.H. ; Bavi, N.</creatorcontrib><description>The epidemiological aspects of the viral dynamic of the SARS-CoV-2 have become increasingly crucial due to major questions and uncertainties around the unaddressed issues of how corpse burial or the disposal of contaminated waste impacts nearby soil and groundwater. Here, a theoretical framework base on a meshless algorithm using the moving least squares (MLS) shape functions is adopted for solving the time-fractional model of the viral diffusion in and across three different environments including water, tissue, and soil. Our computations predict that by considering the α (order of fractional derivative) best fit to experimental data, the virus has a traveling distance of 1mm in water after 22, regardless of the source of contamination (e.g., from tissue or soil). The outcomes and extrapolations of our study are fundamental for providing valuable benchmarks for future experimentation on this topic and ultimately for the accurate description of viral spread across different environments. In addition to COVID-19 relief efforts, our methodology can be adapted for a wide range of applications such as studying virus ecology and genomic reservoirs in freshwater and marine environments.</description><identifier>ISSN: 0955-7997</identifier><identifier>EISSN: 1873-197X</identifier><identifier>EISSN: 0955-7997</identifier><identifier>DOI: 10.1016/j.enganabound.2022.01.018</identifier><identifier>PMID: 35153388</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Coronavirus ; Fractional diffusion equation ; Moving least squares (MLS) shape functions ; SARS-CoV-2 ; Viral dynamics ; Virus diffusion coefficients</subject><ispartof>Engineering analysis with boundary elements, 2022-05, Vol.138, p.108-117</ispartof><rights>2022 Elsevier Ltd</rights><rights>2022 Elsevier Ltd. All rights reserved.</rights><rights>2022 Elsevier Ltd. All rights reserved. 2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-41ee2f7e1b6010b9b5aa617b7bf4eaa56db5ef1fd979b3925e4d928d2be895913</citedby><cites>FETCH-LOGICAL-c483t-41ee2f7e1b6010b9b5aa617b7bf4eaa56db5ef1fd979b3925e4d928d2be895913</cites><orcidid>0000-0001-6764-4394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35153388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bavi, O.</creatorcontrib><creatorcontrib>Hosseininia, M.</creatorcontrib><creatorcontrib>Heydari, M.H.</creatorcontrib><creatorcontrib>Bavi, N.</creatorcontrib><title>SARS-CoV-2 rate of spread in and across tissue, groundwater and soil: A meshless algorithm for the fractional diffusion equation</title><title>Engineering analysis with boundary elements</title><addtitle>Eng Anal Bound Elem</addtitle><description>The epidemiological aspects of the viral dynamic of the SARS-CoV-2 have become increasingly crucial due to major questions and uncertainties around the unaddressed issues of how corpse burial or the disposal of contaminated waste impacts nearby soil and groundwater. Here, a theoretical framework base on a meshless algorithm using the moving least squares (MLS) shape functions is adopted for solving the time-fractional model of the viral diffusion in and across three different environments including water, tissue, and soil. Our computations predict that by considering the α (order of fractional derivative) best fit to experimental data, the virus has a traveling distance of 1mm in water after 22, regardless of the source of contamination (e.g., from tissue or soil). The outcomes and extrapolations of our study are fundamental for providing valuable benchmarks for future experimentation on this topic and ultimately for the accurate description of viral spread across different environments. In addition to COVID-19 relief efforts, our methodology can be adapted for a wide range of applications such as studying virus ecology and genomic reservoirs in freshwater and marine environments.</description><subject>Coronavirus</subject><subject>Fractional diffusion equation</subject><subject>Moving least squares (MLS) shape functions</subject><subject>SARS-CoV-2</subject><subject>Viral dynamics</subject><subject>Virus diffusion coefficients</subject><issn>0955-7997</issn><issn>1873-197X</issn><issn>0955-7997</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkU-LFDEQxYMo7rj6FSTePNhjku50Eg_CMPgPFgRXxVtIOpWZDD3JbNK94s2PbmZnXdabUJCQ-tV7oR5CLyhZUkL717slxI2JxqY5uiUjjC0JrSUfoAWVom2oEj8eogVRnDdCKXGGnpSyI4S2hPSP0VnLKW9bKRfo9-Xqy2WzTt8bhrOZACePyyGDcThEbKLDZsipFDyFUmZ4hTf5aPqzovmmXVIY3-AV3kPZjlBBM25SDtN2j33KeNoC9tkMU0jRjNgF7-dS7xiuZnN8fIoeeTMWeHZ7nqNv7999XX9sLj5_-LReXTRDJ9up6SgA8wKo7QklVlluTE-FFdZ3YAzvneXgqXdKKNsqxqFziknHLEjFFW3P0duT7mG2e3ADxCmbUR9y2Jv8SycT9L-dGLZ6k661lIz3rKsCL28FcrqaoUx6H8oA42gipLlo1jPZi74TbUXVCb1ZXQZ_Z0OJPiaod_pegvqYoCa0lqyzz-__827yb2QVWJ8AqNu6DpB1GQLEAVzIMEzapfAfNn8AJIS2Mw</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Bavi, O.</creator><creator>Hosseininia, M.</creator><creator>Heydari, M.H.</creator><creator>Bavi, N.</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6764-4394</orcidid></search><sort><creationdate>20220501</creationdate><title>SARS-CoV-2 rate of spread in and across tissue, groundwater and soil: A meshless algorithm for the fractional diffusion equation</title><author>Bavi, O. ; Hosseininia, M. ; Heydari, M.H. ; Bavi, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-41ee2f7e1b6010b9b5aa617b7bf4eaa56db5ef1fd979b3925e4d928d2be895913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coronavirus</topic><topic>Fractional diffusion equation</topic><topic>Moving least squares (MLS) shape functions</topic><topic>SARS-CoV-2</topic><topic>Viral dynamics</topic><topic>Virus diffusion coefficients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bavi, O.</creatorcontrib><creatorcontrib>Hosseininia, M.</creatorcontrib><creatorcontrib>Heydari, M.H.</creatorcontrib><creatorcontrib>Bavi, N.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Engineering analysis with boundary elements</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bavi, O.</au><au>Hosseininia, M.</au><au>Heydari, M.H.</au><au>Bavi, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SARS-CoV-2 rate of spread in and across tissue, groundwater and soil: A meshless algorithm for the fractional diffusion equation</atitle><jtitle>Engineering analysis with boundary elements</jtitle><addtitle>Eng Anal Bound Elem</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>138</volume><spage>108</spage><epage>117</epage><pages>108-117</pages><issn>0955-7997</issn><eissn>1873-197X</eissn><eissn>0955-7997</eissn><abstract>The epidemiological aspects of the viral dynamic of the SARS-CoV-2 have become increasingly crucial due to major questions and uncertainties around the unaddressed issues of how corpse burial or the disposal of contaminated waste impacts nearby soil and groundwater. Here, a theoretical framework base on a meshless algorithm using the moving least squares (MLS) shape functions is adopted for solving the time-fractional model of the viral diffusion in and across three different environments including water, tissue, and soil. Our computations predict that by considering the α (order of fractional derivative) best fit to experimental data, the virus has a traveling distance of 1mm in water after 22, regardless of the source of contamination (e.g., from tissue or soil). The outcomes and extrapolations of our study are fundamental for providing valuable benchmarks for future experimentation on this topic and ultimately for the accurate description of viral spread across different environments. In addition to COVID-19 relief efforts, our methodology can be adapted for a wide range of applications such as studying virus ecology and genomic reservoirs in freshwater and marine environments.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>35153388</pmid><doi>10.1016/j.enganabound.2022.01.018</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6764-4394</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0955-7997
ispartof Engineering analysis with boundary elements, 2022-05, Vol.138, p.108-117
issn 0955-7997
1873-197X
0955-7997
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8825624
source Elsevier
subjects Coronavirus
Fractional diffusion equation
Moving least squares (MLS) shape functions
SARS-CoV-2
Viral dynamics
Virus diffusion coefficients
title SARS-CoV-2 rate of spread in and across tissue, groundwater and soil: A meshless algorithm for the fractional diffusion equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A33%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SARS-CoV-2%20rate%20of%20spread%20in%20and%20across%20tissue,%20groundwater%20and%20soil:%20A%20meshless%20algorithm%20for%20the%20fractional%20diffusion%20equation&rft.jtitle=Engineering%20analysis%20with%20boundary%20elements&rft.au=Bavi,%20O.&rft.date=2022-05-01&rft.volume=138&rft.spage=108&rft.epage=117&rft.pages=108-117&rft.issn=0955-7997&rft.eissn=1873-197X&rft_id=info:doi/10.1016/j.enganabound.2022.01.018&rft_dat=%3Cproquest_pubme%3E2628676473%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c483t-41ee2f7e1b6010b9b5aa617b7bf4eaa56db5ef1fd979b3925e4d928d2be895913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2628676473&rft_id=info:pmid/35153388&rfr_iscdi=true