Loading…
Effect of Internal Donors on Raman and IR Spectroscopic Fingerprints of MgCl2/TiCl4 Nanoclusters Determined by Machine Learning and DFT
To go deep into the origin of MgCl2 supported Ziegler-Natta catalysis we need to fully understand the structure and properties of precatalytic nanoclusters MgCl2/TiCl4 in presence of Lewis bases as internal donors (ID). In this work MgCl2/TiCl4 nanoplatelets derived by machine learning and DFT calcu...
Saved in:
Published in: | Materials 2022-01, Vol.15 (3), p.909 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-eeda65474cc3e66a26d6d2839eb2602c492711ecc5b9c8ca158a0847ee5ada473 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-eeda65474cc3e66a26d6d2839eb2602c492711ecc5b9c8ca158a0847ee5ada473 |
container_end_page | |
container_issue | 3 |
container_start_page | 909 |
container_title | Materials |
container_volume | 15 |
creator | D’Amore, Maddalena Taniike, Toshiaki Terano, Minoru Ferrari, Anna Maria |
description | To go deep into the origin of MgCl2 supported Ziegler-Natta catalysis we need to fully understand the structure and properties of precatalytic nanoclusters MgCl2/TiCl4 in presence of Lewis bases as internal donors (ID). In this work MgCl2/TiCl4 nanoplatelets derived by machine learning and DFT calculations have been used to model the interaction with ethyl-benzoate EB as ID, with available exposed sites of binary TixCly/MgCl2 systems. The influence of vicinal Ti2Cl8 and coadsorbed TiCl4 on energetic, structural and spectroscopic behaviour of EB has been considered. The adsorption of homogeneous-like TiCl4EB and TiCl4(EB)2 at the various surface sites have been also simulated. B3LYP-D2 and M06 functionals combined with TZVP quality basis set have been adopted for calculations. The adducts have been characterized by computing IR and Raman spectra that have been found to provide specific fingerprints useful to identify surface species; IR spectra have been successfully compared to available experimental data. |
doi_str_mv | 10.3390/ma15030909 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8840012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2629062239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-eeda65474cc3e66a26d6d2839eb2602c492711ecc5b9c8ca158a0847ee5ada473</originalsourceid><addsrcrecordid>eNpdkdtqGzEQhkVpSUKamzyBoDel4Ean1Uo3hWLHrcFJIHWvxVg762zYlVxpN5An6GtXTkJPupkBffoY_UPIOWcfpbTsYgBeMckss6_ICbdWz7hV6vVf_TE5y_melSMlN8IekWNZcc1MVZ-Qn5dti36ksaWrMGIK0NNFDDFlGgO9hQEChdDQ1S39ti9gitnHfefpsgs7TPvUhTEfXl_t5r242HTzXtFrCNH3Uy6-TBdYytAFbOj2kV6Bvys9XSOkUBRP8sVy85a8aaHPePZST8n35eVm_nW2vvmymn9ez7w0cpwhNqArVSvvJWoNQje6EUZa3ArNhFdW1Jyj99XWeuNLNgaYUTViBQ2oWp6ST8_e_bQdsPEYxgS9K_8YID26CJ379yZ0d24XH5wxijEuiuD9iyDFHxPm0Q1d9tj3EDBO2QktLNNCSFvQd_-h93E6JPxE1aYyWqhCfXimfMk2J2x_D8OZO6zY_Vmx_AWyrpfY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627858624</pqid></control><display><type>article</type><title>Effect of Internal Donors on Raman and IR Spectroscopic Fingerprints of MgCl2/TiCl4 Nanoclusters Determined by Machine Learning and DFT</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Full-Text Journals in Chemistry (Open access)</source><creator>D’Amore, Maddalena ; Taniike, Toshiaki ; Terano, Minoru ; Ferrari, Anna Maria</creator><creatorcontrib>D’Amore, Maddalena ; Taniike, Toshiaki ; Terano, Minoru ; Ferrari, Anna Maria</creatorcontrib><description>To go deep into the origin of MgCl2 supported Ziegler-Natta catalysis we need to fully understand the structure and properties of precatalytic nanoclusters MgCl2/TiCl4 in presence of Lewis bases as internal donors (ID). In this work MgCl2/TiCl4 nanoplatelets derived by machine learning and DFT calculations have been used to model the interaction with ethyl-benzoate EB as ID, with available exposed sites of binary TixCly/MgCl2 systems. The influence of vicinal Ti2Cl8 and coadsorbed TiCl4 on energetic, structural and spectroscopic behaviour of EB has been considered. The adsorption of homogeneous-like TiCl4EB and TiCl4(EB)2 at the various surface sites have been also simulated. B3LYP-D2 and M06 functionals combined with TZVP quality basis set have been adopted for calculations. The adducts have been characterized by computing IR and Raman spectra that have been found to provide specific fingerprints useful to identify surface species; IR spectra have been successfully compared to available experimental data.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15030909</identifier><identifier>PMID: 35160857</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adducts ; Adsorption ; Benzoates ; Catalysis ; Density functional theory ; Fingerprints ; Hypotheses ; Infrared spectroscopy ; Machine learning ; Magnesium chloride ; Morphology ; Nanoclusters ; Polymerization ; Raman spectra</subject><ispartof>Materials, 2022-01, Vol.15 (3), p.909</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-eeda65474cc3e66a26d6d2839eb2602c492711ecc5b9c8ca158a0847ee5ada473</citedby><cites>FETCH-LOGICAL-c383t-eeda65474cc3e66a26d6d2839eb2602c492711ecc5b9c8ca158a0847ee5ada473</cites><orcidid>0000-0003-3135-4744 ; 0000-0003-1465-2774 ; 0000-0002-4248-8767 ; 0000-0002-4870-837X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2627858624/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2627858624?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>D’Amore, Maddalena</creatorcontrib><creatorcontrib>Taniike, Toshiaki</creatorcontrib><creatorcontrib>Terano, Minoru</creatorcontrib><creatorcontrib>Ferrari, Anna Maria</creatorcontrib><title>Effect of Internal Donors on Raman and IR Spectroscopic Fingerprints of MgCl2/TiCl4 Nanoclusters Determined by Machine Learning and DFT</title><title>Materials</title><description>To go deep into the origin of MgCl2 supported Ziegler-Natta catalysis we need to fully understand the structure and properties of precatalytic nanoclusters MgCl2/TiCl4 in presence of Lewis bases as internal donors (ID). In this work MgCl2/TiCl4 nanoplatelets derived by machine learning and DFT calculations have been used to model the interaction with ethyl-benzoate EB as ID, with available exposed sites of binary TixCly/MgCl2 systems. The influence of vicinal Ti2Cl8 and coadsorbed TiCl4 on energetic, structural and spectroscopic behaviour of EB has been considered. The adsorption of homogeneous-like TiCl4EB and TiCl4(EB)2 at the various surface sites have been also simulated. B3LYP-D2 and M06 functionals combined with TZVP quality basis set have been adopted for calculations. The adducts have been characterized by computing IR and Raman spectra that have been found to provide specific fingerprints useful to identify surface species; IR spectra have been successfully compared to available experimental data.</description><subject>Adducts</subject><subject>Adsorption</subject><subject>Benzoates</subject><subject>Catalysis</subject><subject>Density functional theory</subject><subject>Fingerprints</subject><subject>Hypotheses</subject><subject>Infrared spectroscopy</subject><subject>Machine learning</subject><subject>Magnesium chloride</subject><subject>Morphology</subject><subject>Nanoclusters</subject><subject>Polymerization</subject><subject>Raman spectra</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkdtqGzEQhkVpSUKamzyBoDel4Ean1Uo3hWLHrcFJIHWvxVg762zYlVxpN5An6GtXTkJPupkBffoY_UPIOWcfpbTsYgBeMckss6_ICbdWz7hV6vVf_TE5y_melSMlN8IekWNZcc1MVZ-Qn5dti36ksaWrMGIK0NNFDDFlGgO9hQEChdDQ1S39ti9gitnHfefpsgs7TPvUhTEfXl_t5r242HTzXtFrCNH3Uy6-TBdYytAFbOj2kV6Bvys9XSOkUBRP8sVy85a8aaHPePZST8n35eVm_nW2vvmymn9ez7w0cpwhNqArVSvvJWoNQje6EUZa3ArNhFdW1Jyj99XWeuNLNgaYUTViBQ2oWp6ST8_e_bQdsPEYxgS9K_8YID26CJ379yZ0d24XH5wxijEuiuD9iyDFHxPm0Q1d9tj3EDBO2QktLNNCSFvQd_-h93E6JPxE1aYyWqhCfXimfMk2J2x_D8OZO6zY_Vmx_AWyrpfY</recordid><startdate>20220125</startdate><enddate>20220125</enddate><creator>D’Amore, Maddalena</creator><creator>Taniike, Toshiaki</creator><creator>Terano, Minoru</creator><creator>Ferrari, Anna Maria</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3135-4744</orcidid><orcidid>https://orcid.org/0000-0003-1465-2774</orcidid><orcidid>https://orcid.org/0000-0002-4248-8767</orcidid><orcidid>https://orcid.org/0000-0002-4870-837X</orcidid></search><sort><creationdate>20220125</creationdate><title>Effect of Internal Donors on Raman and IR Spectroscopic Fingerprints of MgCl2/TiCl4 Nanoclusters Determined by Machine Learning and DFT</title><author>D’Amore, Maddalena ; Taniike, Toshiaki ; Terano, Minoru ; Ferrari, Anna Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-eeda65474cc3e66a26d6d2839eb2602c492711ecc5b9c8ca158a0847ee5ada473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adducts</topic><topic>Adsorption</topic><topic>Benzoates</topic><topic>Catalysis</topic><topic>Density functional theory</topic><topic>Fingerprints</topic><topic>Hypotheses</topic><topic>Infrared spectroscopy</topic><topic>Machine learning</topic><topic>Magnesium chloride</topic><topic>Morphology</topic><topic>Nanoclusters</topic><topic>Polymerization</topic><topic>Raman spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D’Amore, Maddalena</creatorcontrib><creatorcontrib>Taniike, Toshiaki</creatorcontrib><creatorcontrib>Terano, Minoru</creatorcontrib><creatorcontrib>Ferrari, Anna Maria</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D’Amore, Maddalena</au><au>Taniike, Toshiaki</au><au>Terano, Minoru</au><au>Ferrari, Anna Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Internal Donors on Raman and IR Spectroscopic Fingerprints of MgCl2/TiCl4 Nanoclusters Determined by Machine Learning and DFT</atitle><jtitle>Materials</jtitle><date>2022-01-25</date><risdate>2022</risdate><volume>15</volume><issue>3</issue><spage>909</spage><pages>909-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>To go deep into the origin of MgCl2 supported Ziegler-Natta catalysis we need to fully understand the structure and properties of precatalytic nanoclusters MgCl2/TiCl4 in presence of Lewis bases as internal donors (ID). In this work MgCl2/TiCl4 nanoplatelets derived by machine learning and DFT calculations have been used to model the interaction with ethyl-benzoate EB as ID, with available exposed sites of binary TixCly/MgCl2 systems. The influence of vicinal Ti2Cl8 and coadsorbed TiCl4 on energetic, structural and spectroscopic behaviour of EB has been considered. The adsorption of homogeneous-like TiCl4EB and TiCl4(EB)2 at the various surface sites have been also simulated. B3LYP-D2 and M06 functionals combined with TZVP quality basis set have been adopted for calculations. The adducts have been characterized by computing IR and Raman spectra that have been found to provide specific fingerprints useful to identify surface species; IR spectra have been successfully compared to available experimental data.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35160857</pmid><doi>10.3390/ma15030909</doi><orcidid>https://orcid.org/0000-0003-3135-4744</orcidid><orcidid>https://orcid.org/0000-0003-1465-2774</orcidid><orcidid>https://orcid.org/0000-0002-4248-8767</orcidid><orcidid>https://orcid.org/0000-0002-4870-837X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-01, Vol.15 (3), p.909 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8840012 |
source | Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3); Full-Text Journals in Chemistry (Open access) |
subjects | Adducts Adsorption Benzoates Catalysis Density functional theory Fingerprints Hypotheses Infrared spectroscopy Machine learning Magnesium chloride Morphology Nanoclusters Polymerization Raman spectra |
title | Effect of Internal Donors on Raman and IR Spectroscopic Fingerprints of MgCl2/TiCl4 Nanoclusters Determined by Machine Learning and DFT |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A01%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Internal%20Donors%20on%20Raman%20and%20IR%20Spectroscopic%20Fingerprints%20of%20MgCl2/TiCl4%20Nanoclusters%20Determined%20by%20Machine%20Learning%20and%20DFT&rft.jtitle=Materials&rft.au=D%E2%80%99Amore,%20Maddalena&rft.date=2022-01-25&rft.volume=15&rft.issue=3&rft.spage=909&rft.pages=909-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15030909&rft_dat=%3Cproquest_pubme%3E2629062239%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-eeda65474cc3e66a26d6d2839eb2602c492711ecc5b9c8ca158a0847ee5ada473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2627858624&rft_id=info:pmid/35160857&rfr_iscdi=true |