Loading…
Transparent Anti-SARS-CoV‑2 and Antibacterial Silver Oxide Coatings
Transparent antimicrobial coatings can maintain the aesthetic appeal of surfaces and the functionality of a touch-screen while adding the benefit of reducing disease transmission. We fabricated an antimicrobial coating of silver oxide particles in a silicate matrix on glass. The matrix was grown by...
Saved in:
Published in: | ACS applied materials & interfaces 2022-02, Vol.14 (7), p.8718-8727 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Transparent antimicrobial coatings can maintain the aesthetic appeal of surfaces and the functionality of a touch-screen while adding the benefit of reducing disease transmission. We fabricated an antimicrobial coating of silver oxide particles in a silicate matrix on glass. The matrix was grown by a modified Stöber sol–gel process with vapor-phase water and ammonia. A coating on glass with 2.4 mg of Ag2O per mm2 caused a reduction of 99.3% of SARS-CoV-2 and >99.5% of Pseudomonas aeruginosa, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus compared to the uncoated glass after 1 h. We envisage that screen protectors with transparent antimicrobial coatings will find particular application to communal touch-screens, such as in supermarkets and other check-out or check-in facilities where a number of individuals utilize the same touch-screen in a short interval. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.1c20872 |