Loading…
Measuring Response Style Stability Across Constructs With Item Response Trees
Individual response style behaviors, unrelated to the latent trait of interest, may influence responses to ordinal survey items. Response style can introduce bias in the total score with respect to the trait of interest, threatening valid interpretation of scores. Despite claims of response style st...
Saved in:
Published in: | Educational and psychological measurement 2022-04, Vol.82 (2), p.281-306 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c488t-bd9e5cbe5317fb2f0b690f7b91ec0020978988494221ab3d86f1140b3d6eb9fc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c488t-bd9e5cbe5317fb2f0b690f7b91ec0020978988494221ab3d86f1140b3d6eb9fc3 |
container_end_page | 306 |
container_issue | 2 |
container_start_page | 281 |
container_title | Educational and psychological measurement |
container_volume | 82 |
creator | Ames, Allison J. |
description | Individual response style behaviors, unrelated to the latent trait of interest, may influence responses to ordinal survey items. Response style can introduce bias in the total score with respect to the trait of interest, threatening valid interpretation of scores. Despite claims of response style stability across scales, there has been little research into stability across multiple scales from the beneficial perspective of item response trees. This study examines an extension of the IRTree methodology to include mixed item formats, providing an empirical example of responses to three scales measuring perceptions of social media, climate change, and medical marijuana use. Results show extreme and midpoint response styles were not stable across scales within a single administration and 5-point Likert-type items elicited higher levels of extreme response style than the 4-point items. Latent trait of interest estimation varied, particularly at the lower end of the score distribution, across response style models, demonstrating as appropriate response style model is important for adequate trait estimation using Bayesian Markov chain Monte Carlo estimation. |
doi_str_mv | 10.1177/00131644211020103 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8850762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1330023</ericid><sage_id>10.1177_00131644211020103</sage_id><sourcerecordid>2629016121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-bd9e5cbe5317fb2f0b690f7b91ec0020978988494221ab3d86f1140b3d6eb9fc3</originalsourceid><addsrcrecordid>eNp1kV1LHDEUhkOp6Fb9Ab2oDPSmN6M5yXwkN4IstlUUwQ-8DEn2zBqZnVmTTGH_fTNdu2qluUgC73Pe80XIZ6CHAHV9RClwqIqCAVBGgfIPZAJlyXIuhPhIJqOej8AO-RTCI02nANgmO7wEUUJFJ-TyEnUYvOvm2TWGZd8FzG7iqh1vbVzr4io7sb4PIZsmMfrBxpDdu_iQnUVcvATdesSwR7Ya3Qbcf353yd3309vpz_zi6sfZ9OQit4UQMTcziaU1WHKoG8MaaipJm9pIQEtTJ7IWUohCFoyBNnwmqgagoOlXoZGN5bvkeO27HMwCZxa76HWrlt4ttF-pXjv1Vuncg5r3v5QQJa0rlgy-PRv4_mnAENXCBYttqzvsh6BYlQbLpGR1Qr_-gz72g-9Se4likkIFDBIFa-rPrDw2m2KAqnFZ6t2yUszB6y42EX-3k4AvawC9sxv59Bw4T2MaDQ7XetBzfCnr_xl_A2-opVs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629016121</pqid></control><display><type>article</type><title>Measuring Response Style Stability Across Constructs With Item Response Trees</title><source>PubMed (Medline)</source><source>ERIC</source><source>SAGE Journals</source><creator>Ames, Allison J.</creator><creatorcontrib>Ames, Allison J.</creatorcontrib><description>Individual response style behaviors, unrelated to the latent trait of interest, may influence responses to ordinal survey items. Response style can introduce bias in the total score with respect to the trait of interest, threatening valid interpretation of scores. Despite claims of response style stability across scales, there has been little research into stability across multiple scales from the beneficial perspective of item response trees. This study examines an extension of the IRTree methodology to include mixed item formats, providing an empirical example of responses to three scales measuring perceptions of social media, climate change, and medical marijuana use. Results show extreme and midpoint response styles were not stable across scales within a single administration and 5-point Likert-type items elicited higher levels of extreme response style than the 4-point items. Latent trait of interest estimation varied, particularly at the lower end of the score distribution, across response style models, demonstrating as appropriate response style model is important for adequate trait estimation using Bayesian Markov chain Monte Carlo estimation.</description><identifier>ISSN: 0013-1644</identifier><identifier>ISSN: 1552-3888</identifier><identifier>EISSN: 1552-3888</identifier><identifier>DOI: 10.1177/00131644211020103</identifier><identifier>PMID: 35185160</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Climate ; Climate change ; Comparative Analysis ; Drug Therapy ; Feedback (Response) ; Individual Differences ; Item Response Theory ; Likert Scales ; Marijuana ; Markov Processes ; Medical marijuana ; Monte Carlo Methods ; Quantitative psychology ; Reaction Time ; Response Style (Tests) ; Responses ; Scores ; Social Media ; Social networks ; Test Bias ; Test Items</subject><ispartof>Educational and psychological measurement, 2022-04, Vol.82 (2), p.281-306</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021.</rights><rights>The Author(s) 2021 2021 SAGE Publications</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-bd9e5cbe5317fb2f0b690f7b91ec0020978988494221ab3d86f1140b3d6eb9fc3</citedby><cites>FETCH-LOGICAL-c488t-bd9e5cbe5317fb2f0b690f7b91ec0020978988494221ab3d86f1140b3d6eb9fc3</cites><orcidid>0000-0002-1512-9830</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8850762/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8850762/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,79364</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1330023$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35185160$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ames, Allison J.</creatorcontrib><title>Measuring Response Style Stability Across Constructs With Item Response Trees</title><title>Educational and psychological measurement</title><addtitle>Educ Psychol Meas</addtitle><description>Individual response style behaviors, unrelated to the latent trait of interest, may influence responses to ordinal survey items. Response style can introduce bias in the total score with respect to the trait of interest, threatening valid interpretation of scores. Despite claims of response style stability across scales, there has been little research into stability across multiple scales from the beneficial perspective of item response trees. This study examines an extension of the IRTree methodology to include mixed item formats, providing an empirical example of responses to three scales measuring perceptions of social media, climate change, and medical marijuana use. Results show extreme and midpoint response styles were not stable across scales within a single administration and 5-point Likert-type items elicited higher levels of extreme response style than the 4-point items. Latent trait of interest estimation varied, particularly at the lower end of the score distribution, across response style models, demonstrating as appropriate response style model is important for adequate trait estimation using Bayesian Markov chain Monte Carlo estimation.</description><subject>Climate</subject><subject>Climate change</subject><subject>Comparative Analysis</subject><subject>Drug Therapy</subject><subject>Feedback (Response)</subject><subject>Individual Differences</subject><subject>Item Response Theory</subject><subject>Likert Scales</subject><subject>Marijuana</subject><subject>Markov Processes</subject><subject>Medical marijuana</subject><subject>Monte Carlo Methods</subject><subject>Quantitative psychology</subject><subject>Reaction Time</subject><subject>Response Style (Tests)</subject><subject>Responses</subject><subject>Scores</subject><subject>Social Media</subject><subject>Social networks</subject><subject>Test Bias</subject><subject>Test Items</subject><issn>0013-1644</issn><issn>1552-3888</issn><issn>1552-3888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><recordid>eNp1kV1LHDEUhkOp6Fb9Ab2oDPSmN6M5yXwkN4IstlUUwQ-8DEn2zBqZnVmTTGH_fTNdu2qluUgC73Pe80XIZ6CHAHV9RClwqIqCAVBGgfIPZAJlyXIuhPhIJqOej8AO-RTCI02nANgmO7wEUUJFJ-TyEnUYvOvm2TWGZd8FzG7iqh1vbVzr4io7sb4PIZsmMfrBxpDdu_iQnUVcvATdesSwR7Ya3Qbcf353yd3309vpz_zi6sfZ9OQit4UQMTcziaU1WHKoG8MaaipJm9pIQEtTJ7IWUohCFoyBNnwmqgagoOlXoZGN5bvkeO27HMwCZxa76HWrlt4ttF-pXjv1Vuncg5r3v5QQJa0rlgy-PRv4_mnAENXCBYttqzvsh6BYlQbLpGR1Qr_-gz72g-9Se4likkIFDBIFa-rPrDw2m2KAqnFZ6t2yUszB6y42EX-3k4AvawC9sxv59Bw4T2MaDQ7XetBzfCnr_xl_A2-opVs</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Ames, Allison J.</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1512-9830</orcidid></search><sort><creationdate>20220401</creationdate><title>Measuring Response Style Stability Across Constructs With Item Response Trees</title><author>Ames, Allison J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-bd9e5cbe5317fb2f0b690f7b91ec0020978988494221ab3d86f1140b3d6eb9fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Climate</topic><topic>Climate change</topic><topic>Comparative Analysis</topic><topic>Drug Therapy</topic><topic>Feedback (Response)</topic><topic>Individual Differences</topic><topic>Item Response Theory</topic><topic>Likert Scales</topic><topic>Marijuana</topic><topic>Markov Processes</topic><topic>Medical marijuana</topic><topic>Monte Carlo Methods</topic><topic>Quantitative psychology</topic><topic>Reaction Time</topic><topic>Response Style (Tests)</topic><topic>Responses</topic><topic>Scores</topic><topic>Social Media</topic><topic>Social networks</topic><topic>Test Bias</topic><topic>Test Items</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ames, Allison J.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Educational and psychological measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ames, Allison J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1330023</ericid><atitle>Measuring Response Style Stability Across Constructs With Item Response Trees</atitle><jtitle>Educational and psychological measurement</jtitle><addtitle>Educ Psychol Meas</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>82</volume><issue>2</issue><spage>281</spage><epage>306</epage><pages>281-306</pages><issn>0013-1644</issn><issn>1552-3888</issn><eissn>1552-3888</eissn><abstract>Individual response style behaviors, unrelated to the latent trait of interest, may influence responses to ordinal survey items. Response style can introduce bias in the total score with respect to the trait of interest, threatening valid interpretation of scores. Despite claims of response style stability across scales, there has been little research into stability across multiple scales from the beneficial perspective of item response trees. This study examines an extension of the IRTree methodology to include mixed item formats, providing an empirical example of responses to three scales measuring perceptions of social media, climate change, and medical marijuana use. Results show extreme and midpoint response styles were not stable across scales within a single administration and 5-point Likert-type items elicited higher levels of extreme response style than the 4-point items. Latent trait of interest estimation varied, particularly at the lower end of the score distribution, across response style models, demonstrating as appropriate response style model is important for adequate trait estimation using Bayesian Markov chain Monte Carlo estimation.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>35185160</pmid><doi>10.1177/00131644211020103</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-1512-9830</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-1644 |
ispartof | Educational and psychological measurement, 2022-04, Vol.82 (2), p.281-306 |
issn | 0013-1644 1552-3888 1552-3888 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8850762 |
source | PubMed (Medline); ERIC; SAGE Journals |
subjects | Climate Climate change Comparative Analysis Drug Therapy Feedback (Response) Individual Differences Item Response Theory Likert Scales Marijuana Markov Processes Medical marijuana Monte Carlo Methods Quantitative psychology Reaction Time Response Style (Tests) Responses Scores Social Media Social networks Test Bias Test Items |
title | Measuring Response Style Stability Across Constructs With Item Response Trees |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A29%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20Response%20Style%20Stability%20Across%20Constructs%20With%20Item%20Response%20Trees&rft.jtitle=Educational%20and%20psychological%20measurement&rft.au=Ames,%20Allison%20J.&rft.date=2022-04-01&rft.volume=82&rft.issue=2&rft.spage=281&rft.epage=306&rft.pages=281-306&rft.issn=0013-1644&rft.eissn=1552-3888&rft_id=info:doi/10.1177/00131644211020103&rft_dat=%3Cproquest_pubme%3E2629016121%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c488t-bd9e5cbe5317fb2f0b690f7b91ec0020978988494221ab3d86f1140b3d6eb9fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2629016121&rft_id=info:pmid/35185160&rft_ericid=EJ1330023&rft_sage_id=10.1177_00131644211020103&rfr_iscdi=true |