Loading…

Measuring Response Style Stability Across Constructs With Item Response Trees

Individual response style behaviors, unrelated to the latent trait of interest, may influence responses to ordinal survey items. Response style can introduce bias in the total score with respect to the trait of interest, threatening valid interpretation of scores. Despite claims of response style st...

Full description

Saved in:
Bibliographic Details
Published in:Educational and psychological measurement 2022-04, Vol.82 (2), p.281-306
Main Author: Ames, Allison J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c488t-bd9e5cbe5317fb2f0b690f7b91ec0020978988494221ab3d86f1140b3d6eb9fc3
cites cdi_FETCH-LOGICAL-c488t-bd9e5cbe5317fb2f0b690f7b91ec0020978988494221ab3d86f1140b3d6eb9fc3
container_end_page 306
container_issue 2
container_start_page 281
container_title Educational and psychological measurement
container_volume 82
creator Ames, Allison J.
description Individual response style behaviors, unrelated to the latent trait of interest, may influence responses to ordinal survey items. Response style can introduce bias in the total score with respect to the trait of interest, threatening valid interpretation of scores. Despite claims of response style stability across scales, there has been little research into stability across multiple scales from the beneficial perspective of item response trees. This study examines an extension of the IRTree methodology to include mixed item formats, providing an empirical example of responses to three scales measuring perceptions of social media, climate change, and medical marijuana use. Results show extreme and midpoint response styles were not stable across scales within a single administration and 5-point Likert-type items elicited higher levels of extreme response style than the 4-point items. Latent trait of interest estimation varied, particularly at the lower end of the score distribution, across response style models, demonstrating as appropriate response style model is important for adequate trait estimation using Bayesian Markov chain Monte Carlo estimation.
doi_str_mv 10.1177/00131644211020103
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8850762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1330023</ericid><sage_id>10.1177_00131644211020103</sage_id><sourcerecordid>2629016121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-bd9e5cbe5317fb2f0b690f7b91ec0020978988494221ab3d86f1140b3d6eb9fc3</originalsourceid><addsrcrecordid>eNp1kV1LHDEUhkOp6Fb9Ab2oDPSmN6M5yXwkN4IstlUUwQ-8DEn2zBqZnVmTTGH_fTNdu2qluUgC73Pe80XIZ6CHAHV9RClwqIqCAVBGgfIPZAJlyXIuhPhIJqOej8AO-RTCI02nANgmO7wEUUJFJ-TyEnUYvOvm2TWGZd8FzG7iqh1vbVzr4io7sb4PIZsmMfrBxpDdu_iQnUVcvATdesSwR7Ya3Qbcf353yd3309vpz_zi6sfZ9OQit4UQMTcziaU1WHKoG8MaaipJm9pIQEtTJ7IWUohCFoyBNnwmqgagoOlXoZGN5bvkeO27HMwCZxa76HWrlt4ttF-pXjv1Vuncg5r3v5QQJa0rlgy-PRv4_mnAENXCBYttqzvsh6BYlQbLpGR1Qr_-gz72g-9Se4likkIFDBIFa-rPrDw2m2KAqnFZ6t2yUszB6y42EX-3k4AvawC9sxv59Bw4T2MaDQ7XetBzfCnr_xl_A2-opVs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629016121</pqid></control><display><type>article</type><title>Measuring Response Style Stability Across Constructs With Item Response Trees</title><source>PubMed (Medline)</source><source>ERIC</source><source>SAGE Journals</source><creator>Ames, Allison J.</creator><creatorcontrib>Ames, Allison J.</creatorcontrib><description>Individual response style behaviors, unrelated to the latent trait of interest, may influence responses to ordinal survey items. Response style can introduce bias in the total score with respect to the trait of interest, threatening valid interpretation of scores. Despite claims of response style stability across scales, there has been little research into stability across multiple scales from the beneficial perspective of item response trees. This study examines an extension of the IRTree methodology to include mixed item formats, providing an empirical example of responses to three scales measuring perceptions of social media, climate change, and medical marijuana use. Results show extreme and midpoint response styles were not stable across scales within a single administration and 5-point Likert-type items elicited higher levels of extreme response style than the 4-point items. Latent trait of interest estimation varied, particularly at the lower end of the score distribution, across response style models, demonstrating as appropriate response style model is important for adequate trait estimation using Bayesian Markov chain Monte Carlo estimation.</description><identifier>ISSN: 0013-1644</identifier><identifier>ISSN: 1552-3888</identifier><identifier>EISSN: 1552-3888</identifier><identifier>DOI: 10.1177/00131644211020103</identifier><identifier>PMID: 35185160</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Climate ; Climate change ; Comparative Analysis ; Drug Therapy ; Feedback (Response) ; Individual Differences ; Item Response Theory ; Likert Scales ; Marijuana ; Markov Processes ; Medical marijuana ; Monte Carlo Methods ; Quantitative psychology ; Reaction Time ; Response Style (Tests) ; Responses ; Scores ; Social Media ; Social networks ; Test Bias ; Test Items</subject><ispartof>Educational and psychological measurement, 2022-04, Vol.82 (2), p.281-306</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021.</rights><rights>The Author(s) 2021 2021 SAGE Publications</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-bd9e5cbe5317fb2f0b690f7b91ec0020978988494221ab3d86f1140b3d6eb9fc3</citedby><cites>FETCH-LOGICAL-c488t-bd9e5cbe5317fb2f0b690f7b91ec0020978988494221ab3d86f1140b3d6eb9fc3</cites><orcidid>0000-0002-1512-9830</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8850762/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8850762/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,79364</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1330023$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35185160$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ames, Allison J.</creatorcontrib><title>Measuring Response Style Stability Across Constructs With Item Response Trees</title><title>Educational and psychological measurement</title><addtitle>Educ Psychol Meas</addtitle><description>Individual response style behaviors, unrelated to the latent trait of interest, may influence responses to ordinal survey items. Response style can introduce bias in the total score with respect to the trait of interest, threatening valid interpretation of scores. Despite claims of response style stability across scales, there has been little research into stability across multiple scales from the beneficial perspective of item response trees. This study examines an extension of the IRTree methodology to include mixed item formats, providing an empirical example of responses to three scales measuring perceptions of social media, climate change, and medical marijuana use. Results show extreme and midpoint response styles were not stable across scales within a single administration and 5-point Likert-type items elicited higher levels of extreme response style than the 4-point items. Latent trait of interest estimation varied, particularly at the lower end of the score distribution, across response style models, demonstrating as appropriate response style model is important for adequate trait estimation using Bayesian Markov chain Monte Carlo estimation.</description><subject>Climate</subject><subject>Climate change</subject><subject>Comparative Analysis</subject><subject>Drug Therapy</subject><subject>Feedback (Response)</subject><subject>Individual Differences</subject><subject>Item Response Theory</subject><subject>Likert Scales</subject><subject>Marijuana</subject><subject>Markov Processes</subject><subject>Medical marijuana</subject><subject>Monte Carlo Methods</subject><subject>Quantitative psychology</subject><subject>Reaction Time</subject><subject>Response Style (Tests)</subject><subject>Responses</subject><subject>Scores</subject><subject>Social Media</subject><subject>Social networks</subject><subject>Test Bias</subject><subject>Test Items</subject><issn>0013-1644</issn><issn>1552-3888</issn><issn>1552-3888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><recordid>eNp1kV1LHDEUhkOp6Fb9Ab2oDPSmN6M5yXwkN4IstlUUwQ-8DEn2zBqZnVmTTGH_fTNdu2qluUgC73Pe80XIZ6CHAHV9RClwqIqCAVBGgfIPZAJlyXIuhPhIJqOej8AO-RTCI02nANgmO7wEUUJFJ-TyEnUYvOvm2TWGZd8FzG7iqh1vbVzr4io7sb4PIZsmMfrBxpDdu_iQnUVcvATdesSwR7Ya3Qbcf353yd3309vpz_zi6sfZ9OQit4UQMTcziaU1WHKoG8MaaipJm9pIQEtTJ7IWUohCFoyBNnwmqgagoOlXoZGN5bvkeO27HMwCZxa76HWrlt4ttF-pXjv1Vuncg5r3v5QQJa0rlgy-PRv4_mnAENXCBYttqzvsh6BYlQbLpGR1Qr_-gz72g-9Se4likkIFDBIFa-rPrDw2m2KAqnFZ6t2yUszB6y42EX-3k4AvawC9sxv59Bw4T2MaDQ7XetBzfCnr_xl_A2-opVs</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Ames, Allison J.</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1512-9830</orcidid></search><sort><creationdate>20220401</creationdate><title>Measuring Response Style Stability Across Constructs With Item Response Trees</title><author>Ames, Allison J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-bd9e5cbe5317fb2f0b690f7b91ec0020978988494221ab3d86f1140b3d6eb9fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Climate</topic><topic>Climate change</topic><topic>Comparative Analysis</topic><topic>Drug Therapy</topic><topic>Feedback (Response)</topic><topic>Individual Differences</topic><topic>Item Response Theory</topic><topic>Likert Scales</topic><topic>Marijuana</topic><topic>Markov Processes</topic><topic>Medical marijuana</topic><topic>Monte Carlo Methods</topic><topic>Quantitative psychology</topic><topic>Reaction Time</topic><topic>Response Style (Tests)</topic><topic>Responses</topic><topic>Scores</topic><topic>Social Media</topic><topic>Social networks</topic><topic>Test Bias</topic><topic>Test Items</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ames, Allison J.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Educational and psychological measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ames, Allison J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1330023</ericid><atitle>Measuring Response Style Stability Across Constructs With Item Response Trees</atitle><jtitle>Educational and psychological measurement</jtitle><addtitle>Educ Psychol Meas</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>82</volume><issue>2</issue><spage>281</spage><epage>306</epage><pages>281-306</pages><issn>0013-1644</issn><issn>1552-3888</issn><eissn>1552-3888</eissn><abstract>Individual response style behaviors, unrelated to the latent trait of interest, may influence responses to ordinal survey items. Response style can introduce bias in the total score with respect to the trait of interest, threatening valid interpretation of scores. Despite claims of response style stability across scales, there has been little research into stability across multiple scales from the beneficial perspective of item response trees. This study examines an extension of the IRTree methodology to include mixed item formats, providing an empirical example of responses to three scales measuring perceptions of social media, climate change, and medical marijuana use. Results show extreme and midpoint response styles were not stable across scales within a single administration and 5-point Likert-type items elicited higher levels of extreme response style than the 4-point items. Latent trait of interest estimation varied, particularly at the lower end of the score distribution, across response style models, demonstrating as appropriate response style model is important for adequate trait estimation using Bayesian Markov chain Monte Carlo estimation.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>35185160</pmid><doi>10.1177/00131644211020103</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-1512-9830</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-1644
ispartof Educational and psychological measurement, 2022-04, Vol.82 (2), p.281-306
issn 0013-1644
1552-3888
1552-3888
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8850762
source PubMed (Medline); ERIC; SAGE Journals
subjects Climate
Climate change
Comparative Analysis
Drug Therapy
Feedback (Response)
Individual Differences
Item Response Theory
Likert Scales
Marijuana
Markov Processes
Medical marijuana
Monte Carlo Methods
Quantitative psychology
Reaction Time
Response Style (Tests)
Responses
Scores
Social Media
Social networks
Test Bias
Test Items
title Measuring Response Style Stability Across Constructs With Item Response Trees
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A29%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20Response%20Style%20Stability%20Across%20Constructs%20With%20Item%20Response%20Trees&rft.jtitle=Educational%20and%20psychological%20measurement&rft.au=Ames,%20Allison%20J.&rft.date=2022-04-01&rft.volume=82&rft.issue=2&rft.spage=281&rft.epage=306&rft.pages=281-306&rft.issn=0013-1644&rft.eissn=1552-3888&rft_id=info:doi/10.1177/00131644211020103&rft_dat=%3Cproquest_pubme%3E2629016121%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c488t-bd9e5cbe5317fb2f0b690f7b91ec0020978988494221ab3d86f1140b3d6eb9fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2629016121&rft_id=info:pmid/35185160&rft_ericid=EJ1330023&rft_sage_id=10.1177_00131644211020103&rfr_iscdi=true