Loading…
Bivalent recognition of fatty acyl-CoA by a human integral membrane palmitoyltransferase
S-acylation, also known as palmitoylation, is the most abundant form of protein lipidation in humans. This reversible posttranslational modification, which targets thousands of proteins, is catalyzed by 23 members of the DHHC family of integral membrane enzymes. DHHC enzymes use fatty acyl-CoA as th...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2022-02, Vol.119 (7) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c448t-cb20b32f174058f40cb7aafb65db35961299ccd22d5a1f327a347ac4ca73ecaf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c448t-cb20b32f174058f40cb7aafb65db35961299ccd22d5a1f327a347ac4ca73ecaf3 |
container_end_page | |
container_issue | 7 |
container_start_page | |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 119 |
creator | Lee, Chul-Jin Stix, Robyn Rana, Mitra S Shikwana, Flowreen Murphy, R Elliot Ghirlando, Rodolfo Faraldo-Gómez, José D Banerjee, Anirban |
description | S-acylation, also known as palmitoylation, is the most abundant form of protein lipidation in humans. This reversible posttranslational modification, which targets thousands of proteins, is catalyzed by 23 members of the DHHC family of integral membrane enzymes. DHHC enzymes use fatty acyl-CoA as the ubiquitous fatty acyl donor and become autoacylated at a catalytic cysteine; this intermediate subsequently transfers the fatty acyl group to a cysteine in the target protein. Protein S-acylation intersects with almost all areas of human physiology, and several DHHC enzymes are considered as possible therapeutic targets against diseases such as cancer. These efforts would greatly benefit from a detailed understanding of the molecular basis for this crucial enzymatic reaction. Here, we combine X-ray crystallography with all-atom molecular dynamics simulations to elucidate the structure of the precatalytic complex of human DHHC20 in complex with palmitoyl CoA. The resulting structure reveals that the fatty acyl chain inserts into a hydrophobic pocket within the transmembrane spanning region of the protein, whereas the CoA headgroup is recognized by the cytosolic domain through polar and ionic interactions. Biochemical experiments corroborate the predictions from our structural model. We show, using both computational and experimental analyses, that palmitoyl CoA acts as a bivalent ligand where the interaction of the DHHC enzyme with both the fatty acyl chain and the CoA headgroup is important for catalytic chemistry to proceed. This bivalency explains how, in the presence of high concentrations of free CoA under physiological conditions, DHHC enzymes can efficiently use palmitoyl CoA as a substrate for autoacylation. |
doi_str_mv | 10.1073/pnas.2022050119 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8851515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2630530248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-cb20b32f174058f40cb7aafb65db35961299ccd22d5a1f327a347ac4ca73ecaf3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EokvhzA1ZcOGSdvyROLkglRUflSpxaSVu1sRr77pK7MV2Ku1_j6stBSofxtb8_DzPj5C3DM4YKHG-D5jPOHAOLTA2PCMrBgNrOjnAc7IC4KrpJZcn5FXOtwAwtD28JCeiZRKYGlbk52d_h5MNhSZr4jb44mOg0VGHpRwomsPUrOMFHeue7pYZA_Wh2G3Cic52HhMGS_c4zb7Ew1TqMTubMNvX5IXDKds3D_WU3Hz9cr3-3lz9-Ha5vrhqjJR9aczIYRTcMSWh7Z0EMypEN3btZhTt0DE-DMZsON-0yJzgCoVUaKRBJaxBJ07Jp6PufhlnuzHVSp1N75OfMR10RK__7wS_09t4p_u-ZXVVgfdHgZiL19n4Ys3OxBCsKZr1UjEuK_Tx4ZUUfy02Fz37bOw0VftxyZp3XMm-42Ko6Icn6G1cUqh_UCkBrQAu-0qdHymTYs7JuseJGej7aPV9tPpvtPXGu3-NPvJ_shS_AS_6oO4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630530248</pqid></control><display><type>article</type><title>Bivalent recognition of fatty acyl-CoA by a human integral membrane palmitoyltransferase</title><source>PubMed Central</source><creator>Lee, Chul-Jin ; Stix, Robyn ; Rana, Mitra S ; Shikwana, Flowreen ; Murphy, R Elliot ; Ghirlando, Rodolfo ; Faraldo-Gómez, José D ; Banerjee, Anirban</creator><creatorcontrib>Lee, Chul-Jin ; Stix, Robyn ; Rana, Mitra S ; Shikwana, Flowreen ; Murphy, R Elliot ; Ghirlando, Rodolfo ; Faraldo-Gómez, José D ; Banerjee, Anirban ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>S-acylation, also known as palmitoylation, is the most abundant form of protein lipidation in humans. This reversible posttranslational modification, which targets thousands of proteins, is catalyzed by 23 members of the DHHC family of integral membrane enzymes. DHHC enzymes use fatty acyl-CoA as the ubiquitous fatty acyl donor and become autoacylated at a catalytic cysteine; this intermediate subsequently transfers the fatty acyl group to a cysteine in the target protein. Protein S-acylation intersects with almost all areas of human physiology, and several DHHC enzymes are considered as possible therapeutic targets against diseases such as cancer. These efforts would greatly benefit from a detailed understanding of the molecular basis for this crucial enzymatic reaction. Here, we combine X-ray crystallography with all-atom molecular dynamics simulations to elucidate the structure of the precatalytic complex of human DHHC20 in complex with palmitoyl CoA. The resulting structure reveals that the fatty acyl chain inserts into a hydrophobic pocket within the transmembrane spanning region of the protein, whereas the CoA headgroup is recognized by the cytosolic domain through polar and ionic interactions. Biochemical experiments corroborate the predictions from our structural model. We show, using both computational and experimental analyses, that palmitoyl CoA acts as a bivalent ligand where the interaction of the DHHC enzyme with both the fatty acyl chain and the CoA headgroup is important for catalytic chemistry to proceed. This bivalency explains how, in the presence of high concentrations of free CoA under physiological conditions, DHHC enzymes can efficiently use palmitoyl CoA as a substrate for autoacylation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2022050119</identifier><identifier>PMID: 35140179</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acyl Coenzyme A - chemistry ; Acyl Coenzyme A - metabolism ; Acylation ; Acyltransferases - genetics ; Acyltransferases - metabolism ; BASIC BIOLOGICAL SCIENCES ; Biological Sciences ; Catalytic Domain ; Cell Membrane - enzymology ; Chains ; Computer applications ; Crystallography ; Cysteine ; DHHC acyltransferase ; Enzymes ; fatty acyl-CoA ; Gene Expression Regulation, Enzymologic ; Humans ; Hydrophobicity ; Inserts ; integral membrane enzyme ; Ionic interactions ; Lipoylation ; membrane protein structure ; Membranes ; Models, Molecular ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular structure ; Mutation ; Palmitoylation ; Palmitoyltransferase ; Physical Sciences ; Physiology ; Protein Binding ; Protein Conformation ; Protein Domains ; Protein S ; protein S-acylation ; Proteins ; Structural models ; Substrates ; Therapeutic targets ; X-ray crystallography</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-02, Vol.119 (7)</ispartof><rights>Copyright © 2022 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Feb 15, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-cb20b32f174058f40cb7aafb65db35961299ccd22d5a1f327a347ac4ca73ecaf3</citedby><cites>FETCH-LOGICAL-c448t-cb20b32f174058f40cb7aafb65db35961299ccd22d5a1f327a347ac4ca73ecaf3</cites><orcidid>0000-0002-0915-8141 ; 0000-0003-1494-6801 ; 0000-0003-4880-4959 ; 0000-0003-2128-7875 ; 0000-0002-4144-2345 ; 0000-0001-7224-7676 ; 0000000241442345 ; 0000000348804959 ; 0000000172247676 ; 0000000314946801 ; 0000000321287875 ; 0000000209158141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851515/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851515/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35140179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1847124$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Chul-Jin</creatorcontrib><creatorcontrib>Stix, Robyn</creatorcontrib><creatorcontrib>Rana, Mitra S</creatorcontrib><creatorcontrib>Shikwana, Flowreen</creatorcontrib><creatorcontrib>Murphy, R Elliot</creatorcontrib><creatorcontrib>Ghirlando, Rodolfo</creatorcontrib><creatorcontrib>Faraldo-Gómez, José D</creatorcontrib><creatorcontrib>Banerjee, Anirban</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Bivalent recognition of fatty acyl-CoA by a human integral membrane palmitoyltransferase</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>S-acylation, also known as palmitoylation, is the most abundant form of protein lipidation in humans. This reversible posttranslational modification, which targets thousands of proteins, is catalyzed by 23 members of the DHHC family of integral membrane enzymes. DHHC enzymes use fatty acyl-CoA as the ubiquitous fatty acyl donor and become autoacylated at a catalytic cysteine; this intermediate subsequently transfers the fatty acyl group to a cysteine in the target protein. Protein S-acylation intersects with almost all areas of human physiology, and several DHHC enzymes are considered as possible therapeutic targets against diseases such as cancer. These efforts would greatly benefit from a detailed understanding of the molecular basis for this crucial enzymatic reaction. Here, we combine X-ray crystallography with all-atom molecular dynamics simulations to elucidate the structure of the precatalytic complex of human DHHC20 in complex with palmitoyl CoA. The resulting structure reveals that the fatty acyl chain inserts into a hydrophobic pocket within the transmembrane spanning region of the protein, whereas the CoA headgroup is recognized by the cytosolic domain through polar and ionic interactions. Biochemical experiments corroborate the predictions from our structural model. We show, using both computational and experimental analyses, that palmitoyl CoA acts as a bivalent ligand where the interaction of the DHHC enzyme with both the fatty acyl chain and the CoA headgroup is important for catalytic chemistry to proceed. This bivalency explains how, in the presence of high concentrations of free CoA under physiological conditions, DHHC enzymes can efficiently use palmitoyl CoA as a substrate for autoacylation.</description><subject>Acyl Coenzyme A - chemistry</subject><subject>Acyl Coenzyme A - metabolism</subject><subject>Acylation</subject><subject>Acyltransferases - genetics</subject><subject>Acyltransferases - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biological Sciences</subject><subject>Catalytic Domain</subject><subject>Cell Membrane - enzymology</subject><subject>Chains</subject><subject>Computer applications</subject><subject>Crystallography</subject><subject>Cysteine</subject><subject>DHHC acyltransferase</subject><subject>Enzymes</subject><subject>fatty acyl-CoA</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Humans</subject><subject>Hydrophobicity</subject><subject>Inserts</subject><subject>integral membrane enzyme</subject><subject>Ionic interactions</subject><subject>Lipoylation</subject><subject>membrane protein structure</subject><subject>Membranes</subject><subject>Models, Molecular</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular structure</subject><subject>Mutation</subject><subject>Palmitoylation</subject><subject>Palmitoyltransferase</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Domains</subject><subject>Protein S</subject><subject>protein S-acylation</subject><subject>Proteins</subject><subject>Structural models</subject><subject>Substrates</subject><subject>Therapeutic targets</subject><subject>X-ray crystallography</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkc1v1DAQxS0EokvhzA1ZcOGSdvyROLkglRUflSpxaSVu1sRr77pK7MV2Ku1_j6stBSofxtb8_DzPj5C3DM4YKHG-D5jPOHAOLTA2PCMrBgNrOjnAc7IC4KrpJZcn5FXOtwAwtD28JCeiZRKYGlbk52d_h5MNhSZr4jb44mOg0VGHpRwomsPUrOMFHeue7pYZA_Wh2G3Cic52HhMGS_c4zb7Ew1TqMTubMNvX5IXDKds3D_WU3Hz9cr3-3lz9-Ha5vrhqjJR9aczIYRTcMSWh7Z0EMypEN3btZhTt0DE-DMZsON-0yJzgCoVUaKRBJaxBJ07Jp6PufhlnuzHVSp1N75OfMR10RK__7wS_09t4p_u-ZXVVgfdHgZiL19n4Ys3OxBCsKZr1UjEuK_Tx4ZUUfy02Fz37bOw0VftxyZp3XMm-42Ko6Icn6G1cUqh_UCkBrQAu-0qdHymTYs7JuseJGej7aPV9tPpvtPXGu3-NPvJ_shS_AS_6oO4</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Lee, Chul-Jin</creator><creator>Stix, Robyn</creator><creator>Rana, Mitra S</creator><creator>Shikwana, Flowreen</creator><creator>Murphy, R Elliot</creator><creator>Ghirlando, Rodolfo</creator><creator>Faraldo-Gómez, José D</creator><creator>Banerjee, Anirban</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0915-8141</orcidid><orcidid>https://orcid.org/0000-0003-1494-6801</orcidid><orcidid>https://orcid.org/0000-0003-4880-4959</orcidid><orcidid>https://orcid.org/0000-0003-2128-7875</orcidid><orcidid>https://orcid.org/0000-0002-4144-2345</orcidid><orcidid>https://orcid.org/0000-0001-7224-7676</orcidid><orcidid>https://orcid.org/0000000241442345</orcidid><orcidid>https://orcid.org/0000000348804959</orcidid><orcidid>https://orcid.org/0000000172247676</orcidid><orcidid>https://orcid.org/0000000314946801</orcidid><orcidid>https://orcid.org/0000000321287875</orcidid><orcidid>https://orcid.org/0000000209158141</orcidid></search><sort><creationdate>20220215</creationdate><title>Bivalent recognition of fatty acyl-CoA by a human integral membrane palmitoyltransferase</title><author>Lee, Chul-Jin ; Stix, Robyn ; Rana, Mitra S ; Shikwana, Flowreen ; Murphy, R Elliot ; Ghirlando, Rodolfo ; Faraldo-Gómez, José D ; Banerjee, Anirban</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-cb20b32f174058f40cb7aafb65db35961299ccd22d5a1f327a347ac4ca73ecaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acyl Coenzyme A - chemistry</topic><topic>Acyl Coenzyme A - metabolism</topic><topic>Acylation</topic><topic>Acyltransferases - genetics</topic><topic>Acyltransferases - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biological Sciences</topic><topic>Catalytic Domain</topic><topic>Cell Membrane - enzymology</topic><topic>Chains</topic><topic>Computer applications</topic><topic>Crystallography</topic><topic>Cysteine</topic><topic>DHHC acyltransferase</topic><topic>Enzymes</topic><topic>fatty acyl-CoA</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Humans</topic><topic>Hydrophobicity</topic><topic>Inserts</topic><topic>integral membrane enzyme</topic><topic>Ionic interactions</topic><topic>Lipoylation</topic><topic>membrane protein structure</topic><topic>Membranes</topic><topic>Models, Molecular</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular structure</topic><topic>Mutation</topic><topic>Palmitoylation</topic><topic>Palmitoyltransferase</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Domains</topic><topic>Protein S</topic><topic>protein S-acylation</topic><topic>Proteins</topic><topic>Structural models</topic><topic>Substrates</topic><topic>Therapeutic targets</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Chul-Jin</creatorcontrib><creatorcontrib>Stix, Robyn</creatorcontrib><creatorcontrib>Rana, Mitra S</creatorcontrib><creatorcontrib>Shikwana, Flowreen</creatorcontrib><creatorcontrib>Murphy, R Elliot</creatorcontrib><creatorcontrib>Ghirlando, Rodolfo</creatorcontrib><creatorcontrib>Faraldo-Gómez, José D</creatorcontrib><creatorcontrib>Banerjee, Anirban</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Chul-Jin</au><au>Stix, Robyn</au><au>Rana, Mitra S</au><au>Shikwana, Flowreen</au><au>Murphy, R Elliot</au><au>Ghirlando, Rodolfo</au><au>Faraldo-Gómez, José D</au><au>Banerjee, Anirban</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bivalent recognition of fatty acyl-CoA by a human integral membrane palmitoyltransferase</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-02-15</date><risdate>2022</risdate><volume>119</volume><issue>7</issue><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>S-acylation, also known as palmitoylation, is the most abundant form of protein lipidation in humans. This reversible posttranslational modification, which targets thousands of proteins, is catalyzed by 23 members of the DHHC family of integral membrane enzymes. DHHC enzymes use fatty acyl-CoA as the ubiquitous fatty acyl donor and become autoacylated at a catalytic cysteine; this intermediate subsequently transfers the fatty acyl group to a cysteine in the target protein. Protein S-acylation intersects with almost all areas of human physiology, and several DHHC enzymes are considered as possible therapeutic targets against diseases such as cancer. These efforts would greatly benefit from a detailed understanding of the molecular basis for this crucial enzymatic reaction. Here, we combine X-ray crystallography with all-atom molecular dynamics simulations to elucidate the structure of the precatalytic complex of human DHHC20 in complex with palmitoyl CoA. The resulting structure reveals that the fatty acyl chain inserts into a hydrophobic pocket within the transmembrane spanning region of the protein, whereas the CoA headgroup is recognized by the cytosolic domain through polar and ionic interactions. Biochemical experiments corroborate the predictions from our structural model. We show, using both computational and experimental analyses, that palmitoyl CoA acts as a bivalent ligand where the interaction of the DHHC enzyme with both the fatty acyl chain and the CoA headgroup is important for catalytic chemistry to proceed. This bivalency explains how, in the presence of high concentrations of free CoA under physiological conditions, DHHC enzymes can efficiently use palmitoyl CoA as a substrate for autoacylation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>35140179</pmid><doi>10.1073/pnas.2022050119</doi><orcidid>https://orcid.org/0000-0002-0915-8141</orcidid><orcidid>https://orcid.org/0000-0003-1494-6801</orcidid><orcidid>https://orcid.org/0000-0003-4880-4959</orcidid><orcidid>https://orcid.org/0000-0003-2128-7875</orcidid><orcidid>https://orcid.org/0000-0002-4144-2345</orcidid><orcidid>https://orcid.org/0000-0001-7224-7676</orcidid><orcidid>https://orcid.org/0000000241442345</orcidid><orcidid>https://orcid.org/0000000348804959</orcidid><orcidid>https://orcid.org/0000000172247676</orcidid><orcidid>https://orcid.org/0000000314946801</orcidid><orcidid>https://orcid.org/0000000321287875</orcidid><orcidid>https://orcid.org/0000000209158141</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2022-02, Vol.119 (7) |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8851515 |
source | PubMed Central |
subjects | Acyl Coenzyme A - chemistry Acyl Coenzyme A - metabolism Acylation Acyltransferases - genetics Acyltransferases - metabolism BASIC BIOLOGICAL SCIENCES Biological Sciences Catalytic Domain Cell Membrane - enzymology Chains Computer applications Crystallography Cysteine DHHC acyltransferase Enzymes fatty acyl-CoA Gene Expression Regulation, Enzymologic Humans Hydrophobicity Inserts integral membrane enzyme Ionic interactions Lipoylation membrane protein structure Membranes Models, Molecular Molecular dynamics Molecular Dynamics Simulation Molecular structure Mutation Palmitoylation Palmitoyltransferase Physical Sciences Physiology Protein Binding Protein Conformation Protein Domains Protein S protein S-acylation Proteins Structural models Substrates Therapeutic targets X-ray crystallography |
title | Bivalent recognition of fatty acyl-CoA by a human integral membrane palmitoyltransferase |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A09%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bivalent%20recognition%20of%20fatty%20acyl-CoA%20by%20a%20human%20integral%20membrane%20palmitoyltransferase&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lee,%20Chul-Jin&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2022-02-15&rft.volume=119&rft.issue=7&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2022050119&rft_dat=%3Cproquest_pubme%3E2630530248%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-cb20b32f174058f40cb7aafb65db35961299ccd22d5a1f327a347ac4ca73ecaf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2630530248&rft_id=info:pmid/35140179&rfr_iscdi=true |