Loading…

Bivalent recognition of fatty acyl-CoA by a human integral membrane palmitoyltransferase

S-acylation, also known as palmitoylation, is the most abundant form of protein lipidation in humans. This reversible posttranslational modification, which targets thousands of proteins, is catalyzed by 23 members of the DHHC family of integral membrane enzymes. DHHC enzymes use fatty acyl-CoA as th...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2022-02, Vol.119 (7)
Main Authors: Lee, Chul-Jin, Stix, Robyn, Rana, Mitra S, Shikwana, Flowreen, Murphy, R Elliot, Ghirlando, Rodolfo, Faraldo-Gómez, José D, Banerjee, Anirban
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c448t-cb20b32f174058f40cb7aafb65db35961299ccd22d5a1f327a347ac4ca73ecaf3
cites cdi_FETCH-LOGICAL-c448t-cb20b32f174058f40cb7aafb65db35961299ccd22d5a1f327a347ac4ca73ecaf3
container_end_page
container_issue 7
container_start_page
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 119
creator Lee, Chul-Jin
Stix, Robyn
Rana, Mitra S
Shikwana, Flowreen
Murphy, R Elliot
Ghirlando, Rodolfo
Faraldo-Gómez, José D
Banerjee, Anirban
description S-acylation, also known as palmitoylation, is the most abundant form of protein lipidation in humans. This reversible posttranslational modification, which targets thousands of proteins, is catalyzed by 23 members of the DHHC family of integral membrane enzymes. DHHC enzymes use fatty acyl-CoA as the ubiquitous fatty acyl donor and become autoacylated at a catalytic cysteine; this intermediate subsequently transfers the fatty acyl group to a cysteine in the target protein. Protein S-acylation intersects with almost all areas of human physiology, and several DHHC enzymes are considered as possible therapeutic targets against diseases such as cancer. These efforts would greatly benefit from a detailed understanding of the molecular basis for this crucial enzymatic reaction. Here, we combine X-ray crystallography with all-atom molecular dynamics simulations to elucidate the structure of the precatalytic complex of human DHHC20 in complex with palmitoyl CoA. The resulting structure reveals that the fatty acyl chain inserts into a hydrophobic pocket within the transmembrane spanning region of the protein, whereas the CoA headgroup is recognized by the cytosolic domain through polar and ionic interactions. Biochemical experiments corroborate the predictions from our structural model. We show, using both computational and experimental analyses, that palmitoyl CoA acts as a bivalent ligand where the interaction of the DHHC enzyme with both the fatty acyl chain and the CoA headgroup is important for catalytic chemistry to proceed. This bivalency explains how, in the presence of high concentrations of free CoA under physiological conditions, DHHC enzymes can efficiently use palmitoyl CoA as a substrate for autoacylation.
doi_str_mv 10.1073/pnas.2022050119
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8851515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2630530248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-cb20b32f174058f40cb7aafb65db35961299ccd22d5a1f327a347ac4ca73ecaf3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EokvhzA1ZcOGSdvyROLkglRUflSpxaSVu1sRr77pK7MV2Ku1_j6stBSofxtb8_DzPj5C3DM4YKHG-D5jPOHAOLTA2PCMrBgNrOjnAc7IC4KrpJZcn5FXOtwAwtD28JCeiZRKYGlbk52d_h5MNhSZr4jb44mOg0VGHpRwomsPUrOMFHeue7pYZA_Wh2G3Cic52HhMGS_c4zb7Ew1TqMTubMNvX5IXDKds3D_WU3Hz9cr3-3lz9-Ha5vrhqjJR9aczIYRTcMSWh7Z0EMypEN3btZhTt0DE-DMZsON-0yJzgCoVUaKRBJaxBJ07Jp6PufhlnuzHVSp1N75OfMR10RK__7wS_09t4p_u-ZXVVgfdHgZiL19n4Ys3OxBCsKZr1UjEuK_Tx4ZUUfy02Fz37bOw0VftxyZp3XMm-42Ko6Icn6G1cUqh_UCkBrQAu-0qdHymTYs7JuseJGej7aPV9tPpvtPXGu3-NPvJ_shS_AS_6oO4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630530248</pqid></control><display><type>article</type><title>Bivalent recognition of fatty acyl-CoA by a human integral membrane palmitoyltransferase</title><source>PubMed Central</source><creator>Lee, Chul-Jin ; Stix, Robyn ; Rana, Mitra S ; Shikwana, Flowreen ; Murphy, R Elliot ; Ghirlando, Rodolfo ; Faraldo-Gómez, José D ; Banerjee, Anirban</creator><creatorcontrib>Lee, Chul-Jin ; Stix, Robyn ; Rana, Mitra S ; Shikwana, Flowreen ; Murphy, R Elliot ; Ghirlando, Rodolfo ; Faraldo-Gómez, José D ; Banerjee, Anirban ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>S-acylation, also known as palmitoylation, is the most abundant form of protein lipidation in humans. This reversible posttranslational modification, which targets thousands of proteins, is catalyzed by 23 members of the DHHC family of integral membrane enzymes. DHHC enzymes use fatty acyl-CoA as the ubiquitous fatty acyl donor and become autoacylated at a catalytic cysteine; this intermediate subsequently transfers the fatty acyl group to a cysteine in the target protein. Protein S-acylation intersects with almost all areas of human physiology, and several DHHC enzymes are considered as possible therapeutic targets against diseases such as cancer. These efforts would greatly benefit from a detailed understanding of the molecular basis for this crucial enzymatic reaction. Here, we combine X-ray crystallography with all-atom molecular dynamics simulations to elucidate the structure of the precatalytic complex of human DHHC20 in complex with palmitoyl CoA. The resulting structure reveals that the fatty acyl chain inserts into a hydrophobic pocket within the transmembrane spanning region of the protein, whereas the CoA headgroup is recognized by the cytosolic domain through polar and ionic interactions. Biochemical experiments corroborate the predictions from our structural model. We show, using both computational and experimental analyses, that palmitoyl CoA acts as a bivalent ligand where the interaction of the DHHC enzyme with both the fatty acyl chain and the CoA headgroup is important for catalytic chemistry to proceed. This bivalency explains how, in the presence of high concentrations of free CoA under physiological conditions, DHHC enzymes can efficiently use palmitoyl CoA as a substrate for autoacylation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2022050119</identifier><identifier>PMID: 35140179</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acyl Coenzyme A - chemistry ; Acyl Coenzyme A - metabolism ; Acylation ; Acyltransferases - genetics ; Acyltransferases - metabolism ; BASIC BIOLOGICAL SCIENCES ; Biological Sciences ; Catalytic Domain ; Cell Membrane - enzymology ; Chains ; Computer applications ; Crystallography ; Cysteine ; DHHC acyltransferase ; Enzymes ; fatty acyl-CoA ; Gene Expression Regulation, Enzymologic ; Humans ; Hydrophobicity ; Inserts ; integral membrane enzyme ; Ionic interactions ; Lipoylation ; membrane protein structure ; Membranes ; Models, Molecular ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular structure ; Mutation ; Palmitoylation ; Palmitoyltransferase ; Physical Sciences ; Physiology ; Protein Binding ; Protein Conformation ; Protein Domains ; Protein S ; protein S-acylation ; Proteins ; Structural models ; Substrates ; Therapeutic targets ; X-ray crystallography</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-02, Vol.119 (7)</ispartof><rights>Copyright © 2022 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Feb 15, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-cb20b32f174058f40cb7aafb65db35961299ccd22d5a1f327a347ac4ca73ecaf3</citedby><cites>FETCH-LOGICAL-c448t-cb20b32f174058f40cb7aafb65db35961299ccd22d5a1f327a347ac4ca73ecaf3</cites><orcidid>0000-0002-0915-8141 ; 0000-0003-1494-6801 ; 0000-0003-4880-4959 ; 0000-0003-2128-7875 ; 0000-0002-4144-2345 ; 0000-0001-7224-7676 ; 0000000241442345 ; 0000000348804959 ; 0000000172247676 ; 0000000314946801 ; 0000000321287875 ; 0000000209158141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851515/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851515/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35140179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1847124$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Chul-Jin</creatorcontrib><creatorcontrib>Stix, Robyn</creatorcontrib><creatorcontrib>Rana, Mitra S</creatorcontrib><creatorcontrib>Shikwana, Flowreen</creatorcontrib><creatorcontrib>Murphy, R Elliot</creatorcontrib><creatorcontrib>Ghirlando, Rodolfo</creatorcontrib><creatorcontrib>Faraldo-Gómez, José D</creatorcontrib><creatorcontrib>Banerjee, Anirban</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Bivalent recognition of fatty acyl-CoA by a human integral membrane palmitoyltransferase</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>S-acylation, also known as palmitoylation, is the most abundant form of protein lipidation in humans. This reversible posttranslational modification, which targets thousands of proteins, is catalyzed by 23 members of the DHHC family of integral membrane enzymes. DHHC enzymes use fatty acyl-CoA as the ubiquitous fatty acyl donor and become autoacylated at a catalytic cysteine; this intermediate subsequently transfers the fatty acyl group to a cysteine in the target protein. Protein S-acylation intersects with almost all areas of human physiology, and several DHHC enzymes are considered as possible therapeutic targets against diseases such as cancer. These efforts would greatly benefit from a detailed understanding of the molecular basis for this crucial enzymatic reaction. Here, we combine X-ray crystallography with all-atom molecular dynamics simulations to elucidate the structure of the precatalytic complex of human DHHC20 in complex with palmitoyl CoA. The resulting structure reveals that the fatty acyl chain inserts into a hydrophobic pocket within the transmembrane spanning region of the protein, whereas the CoA headgroup is recognized by the cytosolic domain through polar and ionic interactions. Biochemical experiments corroborate the predictions from our structural model. We show, using both computational and experimental analyses, that palmitoyl CoA acts as a bivalent ligand where the interaction of the DHHC enzyme with both the fatty acyl chain and the CoA headgroup is important for catalytic chemistry to proceed. This bivalency explains how, in the presence of high concentrations of free CoA under physiological conditions, DHHC enzymes can efficiently use palmitoyl CoA as a substrate for autoacylation.</description><subject>Acyl Coenzyme A - chemistry</subject><subject>Acyl Coenzyme A - metabolism</subject><subject>Acylation</subject><subject>Acyltransferases - genetics</subject><subject>Acyltransferases - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biological Sciences</subject><subject>Catalytic Domain</subject><subject>Cell Membrane - enzymology</subject><subject>Chains</subject><subject>Computer applications</subject><subject>Crystallography</subject><subject>Cysteine</subject><subject>DHHC acyltransferase</subject><subject>Enzymes</subject><subject>fatty acyl-CoA</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Humans</subject><subject>Hydrophobicity</subject><subject>Inserts</subject><subject>integral membrane enzyme</subject><subject>Ionic interactions</subject><subject>Lipoylation</subject><subject>membrane protein structure</subject><subject>Membranes</subject><subject>Models, Molecular</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular structure</subject><subject>Mutation</subject><subject>Palmitoylation</subject><subject>Palmitoyltransferase</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Domains</subject><subject>Protein S</subject><subject>protein S-acylation</subject><subject>Proteins</subject><subject>Structural models</subject><subject>Substrates</subject><subject>Therapeutic targets</subject><subject>X-ray crystallography</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkc1v1DAQxS0EokvhzA1ZcOGSdvyROLkglRUflSpxaSVu1sRr77pK7MV2Ku1_j6stBSofxtb8_DzPj5C3DM4YKHG-D5jPOHAOLTA2PCMrBgNrOjnAc7IC4KrpJZcn5FXOtwAwtD28JCeiZRKYGlbk52d_h5MNhSZr4jb44mOg0VGHpRwomsPUrOMFHeue7pYZA_Wh2G3Cic52HhMGS_c4zb7Ew1TqMTubMNvX5IXDKds3D_WU3Hz9cr3-3lz9-Ha5vrhqjJR9aczIYRTcMSWh7Z0EMypEN3btZhTt0DE-DMZsON-0yJzgCoVUaKRBJaxBJ07Jp6PufhlnuzHVSp1N75OfMR10RK__7wS_09t4p_u-ZXVVgfdHgZiL19n4Ys3OxBCsKZr1UjEuK_Tx4ZUUfy02Fz37bOw0VftxyZp3XMm-42Ko6Icn6G1cUqh_UCkBrQAu-0qdHymTYs7JuseJGej7aPV9tPpvtPXGu3-NPvJ_shS_AS_6oO4</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Lee, Chul-Jin</creator><creator>Stix, Robyn</creator><creator>Rana, Mitra S</creator><creator>Shikwana, Flowreen</creator><creator>Murphy, R Elliot</creator><creator>Ghirlando, Rodolfo</creator><creator>Faraldo-Gómez, José D</creator><creator>Banerjee, Anirban</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0915-8141</orcidid><orcidid>https://orcid.org/0000-0003-1494-6801</orcidid><orcidid>https://orcid.org/0000-0003-4880-4959</orcidid><orcidid>https://orcid.org/0000-0003-2128-7875</orcidid><orcidid>https://orcid.org/0000-0002-4144-2345</orcidid><orcidid>https://orcid.org/0000-0001-7224-7676</orcidid><orcidid>https://orcid.org/0000000241442345</orcidid><orcidid>https://orcid.org/0000000348804959</orcidid><orcidid>https://orcid.org/0000000172247676</orcidid><orcidid>https://orcid.org/0000000314946801</orcidid><orcidid>https://orcid.org/0000000321287875</orcidid><orcidid>https://orcid.org/0000000209158141</orcidid></search><sort><creationdate>20220215</creationdate><title>Bivalent recognition of fatty acyl-CoA by a human integral membrane palmitoyltransferase</title><author>Lee, Chul-Jin ; Stix, Robyn ; Rana, Mitra S ; Shikwana, Flowreen ; Murphy, R Elliot ; Ghirlando, Rodolfo ; Faraldo-Gómez, José D ; Banerjee, Anirban</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-cb20b32f174058f40cb7aafb65db35961299ccd22d5a1f327a347ac4ca73ecaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acyl Coenzyme A - chemistry</topic><topic>Acyl Coenzyme A - metabolism</topic><topic>Acylation</topic><topic>Acyltransferases - genetics</topic><topic>Acyltransferases - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biological Sciences</topic><topic>Catalytic Domain</topic><topic>Cell Membrane - enzymology</topic><topic>Chains</topic><topic>Computer applications</topic><topic>Crystallography</topic><topic>Cysteine</topic><topic>DHHC acyltransferase</topic><topic>Enzymes</topic><topic>fatty acyl-CoA</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Humans</topic><topic>Hydrophobicity</topic><topic>Inserts</topic><topic>integral membrane enzyme</topic><topic>Ionic interactions</topic><topic>Lipoylation</topic><topic>membrane protein structure</topic><topic>Membranes</topic><topic>Models, Molecular</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular structure</topic><topic>Mutation</topic><topic>Palmitoylation</topic><topic>Palmitoyltransferase</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Domains</topic><topic>Protein S</topic><topic>protein S-acylation</topic><topic>Proteins</topic><topic>Structural models</topic><topic>Substrates</topic><topic>Therapeutic targets</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Chul-Jin</creatorcontrib><creatorcontrib>Stix, Robyn</creatorcontrib><creatorcontrib>Rana, Mitra S</creatorcontrib><creatorcontrib>Shikwana, Flowreen</creatorcontrib><creatorcontrib>Murphy, R Elliot</creatorcontrib><creatorcontrib>Ghirlando, Rodolfo</creatorcontrib><creatorcontrib>Faraldo-Gómez, José D</creatorcontrib><creatorcontrib>Banerjee, Anirban</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Chul-Jin</au><au>Stix, Robyn</au><au>Rana, Mitra S</au><au>Shikwana, Flowreen</au><au>Murphy, R Elliot</au><au>Ghirlando, Rodolfo</au><au>Faraldo-Gómez, José D</au><au>Banerjee, Anirban</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bivalent recognition of fatty acyl-CoA by a human integral membrane palmitoyltransferase</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-02-15</date><risdate>2022</risdate><volume>119</volume><issue>7</issue><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>S-acylation, also known as palmitoylation, is the most abundant form of protein lipidation in humans. This reversible posttranslational modification, which targets thousands of proteins, is catalyzed by 23 members of the DHHC family of integral membrane enzymes. DHHC enzymes use fatty acyl-CoA as the ubiquitous fatty acyl donor and become autoacylated at a catalytic cysteine; this intermediate subsequently transfers the fatty acyl group to a cysteine in the target protein. Protein S-acylation intersects with almost all areas of human physiology, and several DHHC enzymes are considered as possible therapeutic targets against diseases such as cancer. These efforts would greatly benefit from a detailed understanding of the molecular basis for this crucial enzymatic reaction. Here, we combine X-ray crystallography with all-atom molecular dynamics simulations to elucidate the structure of the precatalytic complex of human DHHC20 in complex with palmitoyl CoA. The resulting structure reveals that the fatty acyl chain inserts into a hydrophobic pocket within the transmembrane spanning region of the protein, whereas the CoA headgroup is recognized by the cytosolic domain through polar and ionic interactions. Biochemical experiments corroborate the predictions from our structural model. We show, using both computational and experimental analyses, that palmitoyl CoA acts as a bivalent ligand where the interaction of the DHHC enzyme with both the fatty acyl chain and the CoA headgroup is important for catalytic chemistry to proceed. This bivalency explains how, in the presence of high concentrations of free CoA under physiological conditions, DHHC enzymes can efficiently use palmitoyl CoA as a substrate for autoacylation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>35140179</pmid><doi>10.1073/pnas.2022050119</doi><orcidid>https://orcid.org/0000-0002-0915-8141</orcidid><orcidid>https://orcid.org/0000-0003-1494-6801</orcidid><orcidid>https://orcid.org/0000-0003-4880-4959</orcidid><orcidid>https://orcid.org/0000-0003-2128-7875</orcidid><orcidid>https://orcid.org/0000-0002-4144-2345</orcidid><orcidid>https://orcid.org/0000-0001-7224-7676</orcidid><orcidid>https://orcid.org/0000000241442345</orcidid><orcidid>https://orcid.org/0000000348804959</orcidid><orcidid>https://orcid.org/0000000172247676</orcidid><orcidid>https://orcid.org/0000000314946801</orcidid><orcidid>https://orcid.org/0000000321287875</orcidid><orcidid>https://orcid.org/0000000209158141</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2022-02, Vol.119 (7)
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8851515
source PubMed Central
subjects Acyl Coenzyme A - chemistry
Acyl Coenzyme A - metabolism
Acylation
Acyltransferases - genetics
Acyltransferases - metabolism
BASIC BIOLOGICAL SCIENCES
Biological Sciences
Catalytic Domain
Cell Membrane - enzymology
Chains
Computer applications
Crystallography
Cysteine
DHHC acyltransferase
Enzymes
fatty acyl-CoA
Gene Expression Regulation, Enzymologic
Humans
Hydrophobicity
Inserts
integral membrane enzyme
Ionic interactions
Lipoylation
membrane protein structure
Membranes
Models, Molecular
Molecular dynamics
Molecular Dynamics Simulation
Molecular structure
Mutation
Palmitoylation
Palmitoyltransferase
Physical Sciences
Physiology
Protein Binding
Protein Conformation
Protein Domains
Protein S
protein S-acylation
Proteins
Structural models
Substrates
Therapeutic targets
X-ray crystallography
title Bivalent recognition of fatty acyl-CoA by a human integral membrane palmitoyltransferase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A09%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bivalent%20recognition%20of%20fatty%20acyl-CoA%20by%20a%20human%20integral%20membrane%20palmitoyltransferase&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lee,%20Chul-Jin&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2022-02-15&rft.volume=119&rft.issue=7&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2022050119&rft_dat=%3Cproquest_pubme%3E2630530248%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-cb20b32f174058f40cb7aafb65db35961299ccd22d5a1f327a347ac4ca73ecaf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2630530248&rft_id=info:pmid/35140179&rfr_iscdi=true