Loading…

Single and repeated ketamine treatment induces perfusion changes in sensory and limbic networks in major depressive disorder

Ketamine infusion therapy can produce fast-acting antidepressant effects in patients with major depressive disorder (MDD). Yet, how single and repeated ketamine treatment induces brain systems-level neuroplasticity underlying symptom improvement is unknown. Advanced multiband imaging (MB) pseudo-con...

Full description

Saved in:
Bibliographic Details
Published in:European neuropsychopharmacology 2020-04, Vol.33, p.89-100
Main Authors: Sahib, Ashish K., Loureiro, Joana R.A., Vasavada, Megha M., Kubicki, Antoni, Joshi, Shantanu H., Wang, Kai, Woods, Roger P., Congdon, Eliza, Wang, Danny J.J., Boucher, Michael L., Espinoza, Randall, Narr, Katherine L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ketamine infusion therapy can produce fast-acting antidepressant effects in patients with major depressive disorder (MDD). Yet, how single and repeated ketamine treatment induces brain systems-level neuroplasticity underlying symptom improvement is unknown. Advanced multiband imaging (MB) pseudo-continuous arterial spin labeling (pCASL) perfusion MRI data was acquired from patients with treatment resistant depression (TRD) (N = 22, mean age=35.2 ± 9.95 SD, 27% female) at baseline, and 24 h after receiving single, and four subanesthetic (0.5 mg/kg) intravenous ketamine infusions. Changes in global and regional CBF were compared across time points, and relationships with overall mood, anhedonia and apathy were examined. Comparisons between patients at baseline and controls (N = 18, mean age=36.11 ± 14.5 SD, 57% female) established normalization of treatment effects. Results showed increased regional CBF in the cingulate and primary and higher-order visual association regions after first ketamine treatment. Baseline CBF in the fusiform, and acute changes in CBF in visual areas were related to symptom improvement after single and repeated ketamine treatment, respectively. In contrast, after serial infusion therapy, decreases in regional CBF were observed in the bilateral hippocampus and right insula with ketamine treatment. Findings demonstrate that neurophysiological changes occurring with single and repeated ketamine treatment follow both a regional and temporal pattern including sensory and limbic regions. Initial changes are observed in the posterior cingulate and precuneus and primary and higher-order visual areas, which relate to clinical responses. However, repeated exposure to ketamine, though not relating to clinical outcome, appears to engage deeper limbic structures and insula. ClinicalTrials.gov: Biomarkers of Fast Acting Therapies in Major Depression, https://clinicaltrials.gov/ct2/show/NCT02165449, NCT02165449
ISSN:0924-977X
1873-7862
DOI:10.1016/j.euroneuro.2020.01.017