Loading…
Physician-Customized Strategies for Reducing Outpatient Waiting Time in South Korea Using Queueing Theory and Probabilistic Metamodels
The time a patient spends waiting to be seen by a healthcare professional is an important determinant of patient satisfaction in outpatient care. Hence, it is crucial to identify parameters that affect the waiting time and optimize it accordingly. First, statistical analysis was used to validate the...
Saved in:
Published in: | International journal of environmental research and public health 2022-02, Vol.19 (4), p.2073 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c418t-633f9731e8404b69d606c10897b6f417829dc142a89a3e40d444e236c770f51d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c418t-633f9731e8404b69d606c10897b6f417829dc142a89a3e40d444e236c770f51d3 |
container_end_page | |
container_issue | 4 |
container_start_page | 2073 |
container_title | International journal of environmental research and public health |
container_volume | 19 |
creator | Lee, Hanbit Choi, Eun Kyoung Min, Kyung A Bae, Eunjeong Lee, Hooyun Lee, Jongsoo |
description | The time a patient spends waiting to be seen by a healthcare professional is an important determinant of patient satisfaction in outpatient care. Hence, it is crucial to identify parameters that affect the waiting time and optimize it accordingly. First, statistical analysis was used to validate the effective parameters. However, no parameters were found to have significant effects with respect to the entire outpatient department or to each department. Therefore, we studied the improvement of patient waiting times by analyzing and optimizing effective parameters for each physician. Queueing theory was used to calculate the probability that patients would wait for more than 30 min for a consultation session. Using this result, we built metamodels for each physician, formulated an effective method to optimize the problem, and found a solution to minimize waiting time using a non-dominated sorting genetic algorithm (NSGA-II). On average, we obtained a 30% decrease in the probability that patients would wait for a long period. This study shows the importance of customized improvement strategies for each physician. |
doi_str_mv | 10.3390/ijerph19042073 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8871932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2632971895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-633f9731e8404b69d606c10897b6f417829dc142a89a3e40d444e236c770f51d3</originalsourceid><addsrcrecordid>eNpdkUlvFDEQhVsIRBa4ckSWuHDp4G3c9gUJjVgiEiWQRBwtt1097VF3e_CCNPkB_O70kEUJJ5dcXz3Vq1dVbwg-YkzhD34NcdMThTnFDXtW7RMhcM0FJs8f1XvVQUprjJnkQr2s9tiCYkEXar_6e95vk7feTPWypBxGfw0OXeRoMqw8JNSFiH6CK9ZPK3RW8sZkD1NGv4zPu69LPwLyE7oIJffoe4hg0FXadX4UKPAP6SHELTKTQ-cxtKb1g0_ZW3QK2YzBwZBeVS86MyR4ffceVldfPl8uv9UnZ1-Pl59OasuJzLVgrFMNIyA55q1QTmBhCZaqaUXHSSOpcpZwaqQyDDh2nHOgTNimwd2COHZYfbzV3ZR2BGdnJ9EMehP9aOJWB-P1087ke70Kf7SUDVGMzgLv7wRi-F0gZT36ZGEYzAShJE3nFaWabytm9N1_6DqUOM32dhRVDZFqMVNHt5SNIaUI3cMyBOtdxPppxPPA28cWHvD7TNkNBrWk4A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632971895</pqid></control><display><type>article</type><title>Physician-Customized Strategies for Reducing Outpatient Waiting Time in South Korea Using Queueing Theory and Probabilistic Metamodels</title><source>ProQuest - Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lee, Hanbit ; Choi, Eun Kyoung ; Min, Kyung A ; Bae, Eunjeong ; Lee, Hooyun ; Lee, Jongsoo</creator><creatorcontrib>Lee, Hanbit ; Choi, Eun Kyoung ; Min, Kyung A ; Bae, Eunjeong ; Lee, Hooyun ; Lee, Jongsoo</creatorcontrib><description>The time a patient spends waiting to be seen by a healthcare professional is an important determinant of patient satisfaction in outpatient care. Hence, it is crucial to identify parameters that affect the waiting time and optimize it accordingly. First, statistical analysis was used to validate the effective parameters. However, no parameters were found to have significant effects with respect to the entire outpatient department or to each department. Therefore, we studied the improvement of patient waiting times by analyzing and optimizing effective parameters for each physician. Queueing theory was used to calculate the probability that patients would wait for more than 30 min for a consultation session. Using this result, we built metamodels for each physician, formulated an effective method to optimize the problem, and found a solution to minimize waiting time using a non-dominated sorting genetic algorithm (NSGA-II). On average, we obtained a 30% decrease in the probability that patients would wait for a long period. This study shows the importance of customized improvement strategies for each physician.</description><identifier>ISSN: 1660-4601</identifier><identifier>ISSN: 1661-7827</identifier><identifier>EISSN: 1660-4601</identifier><identifier>DOI: 10.3390/ijerph19042073</identifier><identifier>PMID: 35206259</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Customization ; Genetic algorithms ; Hospitals ; Metamodels ; Nursing ; Patient satisfaction ; Patients ; Physicians ; Probability distribution ; Professionals ; Queuing theory ; Scheduling ; Sorting algorithms ; Statistical analysis</subject><ispartof>International journal of environmental research and public health, 2022-02, Vol.19 (4), p.2073</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-633f9731e8404b69d606c10897b6f417829dc142a89a3e40d444e236c770f51d3</citedby><cites>FETCH-LOGICAL-c418t-633f9731e8404b69d606c10897b6f417829dc142a89a3e40d444e236c770f51d3</cites><orcidid>0000-0003-1583-8933 ; 0000-0001-7346-7902 ; 0000-0003-1941-1953 ; 0000-0003-4622-2437</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2632971895/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2632971895?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35206259$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Hanbit</creatorcontrib><creatorcontrib>Choi, Eun Kyoung</creatorcontrib><creatorcontrib>Min, Kyung A</creatorcontrib><creatorcontrib>Bae, Eunjeong</creatorcontrib><creatorcontrib>Lee, Hooyun</creatorcontrib><creatorcontrib>Lee, Jongsoo</creatorcontrib><title>Physician-Customized Strategies for Reducing Outpatient Waiting Time in South Korea Using Queueing Theory and Probabilistic Metamodels</title><title>International journal of environmental research and public health</title><addtitle>Int J Environ Res Public Health</addtitle><description>The time a patient spends waiting to be seen by a healthcare professional is an important determinant of patient satisfaction in outpatient care. Hence, it is crucial to identify parameters that affect the waiting time and optimize it accordingly. First, statistical analysis was used to validate the effective parameters. However, no parameters were found to have significant effects with respect to the entire outpatient department or to each department. Therefore, we studied the improvement of patient waiting times by analyzing and optimizing effective parameters for each physician. Queueing theory was used to calculate the probability that patients would wait for more than 30 min for a consultation session. Using this result, we built metamodels for each physician, formulated an effective method to optimize the problem, and found a solution to minimize waiting time using a non-dominated sorting genetic algorithm (NSGA-II). On average, we obtained a 30% decrease in the probability that patients would wait for a long period. This study shows the importance of customized improvement strategies for each physician.</description><subject>Customization</subject><subject>Genetic algorithms</subject><subject>Hospitals</subject><subject>Metamodels</subject><subject>Nursing</subject><subject>Patient satisfaction</subject><subject>Patients</subject><subject>Physicians</subject><subject>Probability distribution</subject><subject>Professionals</subject><subject>Queuing theory</subject><subject>Scheduling</subject><subject>Sorting algorithms</subject><subject>Statistical analysis</subject><issn>1660-4601</issn><issn>1661-7827</issn><issn>1660-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkUlvFDEQhVsIRBa4ckSWuHDp4G3c9gUJjVgiEiWQRBwtt1097VF3e_CCNPkB_O70kEUJJ5dcXz3Vq1dVbwg-YkzhD34NcdMThTnFDXtW7RMhcM0FJs8f1XvVQUprjJnkQr2s9tiCYkEXar_6e95vk7feTPWypBxGfw0OXeRoMqw8JNSFiH6CK9ZPK3RW8sZkD1NGv4zPu69LPwLyE7oIJffoe4hg0FXadX4UKPAP6SHELTKTQ-cxtKb1g0_ZW3QK2YzBwZBeVS86MyR4ffceVldfPl8uv9UnZ1-Pl59OasuJzLVgrFMNIyA55q1QTmBhCZaqaUXHSSOpcpZwaqQyDDh2nHOgTNimwd2COHZYfbzV3ZR2BGdnJ9EMehP9aOJWB-P1087ke70Kf7SUDVGMzgLv7wRi-F0gZT36ZGEYzAShJE3nFaWabytm9N1_6DqUOM32dhRVDZFqMVNHt5SNIaUI3cMyBOtdxPppxPPA28cWHvD7TNkNBrWk4A</recordid><startdate>20220212</startdate><enddate>20220212</enddate><creator>Lee, Hanbit</creator><creator>Choi, Eun Kyoung</creator><creator>Min, Kyung A</creator><creator>Bae, Eunjeong</creator><creator>Lee, Hooyun</creator><creator>Lee, Jongsoo</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1583-8933</orcidid><orcidid>https://orcid.org/0000-0001-7346-7902</orcidid><orcidid>https://orcid.org/0000-0003-1941-1953</orcidid><orcidid>https://orcid.org/0000-0003-4622-2437</orcidid></search><sort><creationdate>20220212</creationdate><title>Physician-Customized Strategies for Reducing Outpatient Waiting Time in South Korea Using Queueing Theory and Probabilistic Metamodels</title><author>Lee, Hanbit ; Choi, Eun Kyoung ; Min, Kyung A ; Bae, Eunjeong ; Lee, Hooyun ; Lee, Jongsoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-633f9731e8404b69d606c10897b6f417829dc142a89a3e40d444e236c770f51d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Customization</topic><topic>Genetic algorithms</topic><topic>Hospitals</topic><topic>Metamodels</topic><topic>Nursing</topic><topic>Patient satisfaction</topic><topic>Patients</topic><topic>Physicians</topic><topic>Probability distribution</topic><topic>Professionals</topic><topic>Queuing theory</topic><topic>Scheduling</topic><topic>Sorting algorithms</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hanbit</creatorcontrib><creatorcontrib>Choi, Eun Kyoung</creatorcontrib><creatorcontrib>Min, Kyung A</creatorcontrib><creatorcontrib>Bae, Eunjeong</creatorcontrib><creatorcontrib>Lee, Hooyun</creatorcontrib><creatorcontrib>Lee, Jongsoo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of environmental research and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hanbit</au><au>Choi, Eun Kyoung</au><au>Min, Kyung A</au><au>Bae, Eunjeong</au><au>Lee, Hooyun</au><au>Lee, Jongsoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physician-Customized Strategies for Reducing Outpatient Waiting Time in South Korea Using Queueing Theory and Probabilistic Metamodels</atitle><jtitle>International journal of environmental research and public health</jtitle><addtitle>Int J Environ Res Public Health</addtitle><date>2022-02-12</date><risdate>2022</risdate><volume>19</volume><issue>4</issue><spage>2073</spage><pages>2073-</pages><issn>1660-4601</issn><issn>1661-7827</issn><eissn>1660-4601</eissn><abstract>The time a patient spends waiting to be seen by a healthcare professional is an important determinant of patient satisfaction in outpatient care. Hence, it is crucial to identify parameters that affect the waiting time and optimize it accordingly. First, statistical analysis was used to validate the effective parameters. However, no parameters were found to have significant effects with respect to the entire outpatient department or to each department. Therefore, we studied the improvement of patient waiting times by analyzing and optimizing effective parameters for each physician. Queueing theory was used to calculate the probability that patients would wait for more than 30 min for a consultation session. Using this result, we built metamodels for each physician, formulated an effective method to optimize the problem, and found a solution to minimize waiting time using a non-dominated sorting genetic algorithm (NSGA-II). On average, we obtained a 30% decrease in the probability that patients would wait for a long period. This study shows the importance of customized improvement strategies for each physician.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35206259</pmid><doi>10.3390/ijerph19042073</doi><orcidid>https://orcid.org/0000-0003-1583-8933</orcidid><orcidid>https://orcid.org/0000-0001-7346-7902</orcidid><orcidid>https://orcid.org/0000-0003-1941-1953</orcidid><orcidid>https://orcid.org/0000-0003-4622-2437</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-4601 |
ispartof | International journal of environmental research and public health, 2022-02, Vol.19 (4), p.2073 |
issn | 1660-4601 1661-7827 1660-4601 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8871932 |
source | ProQuest - Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Customization Genetic algorithms Hospitals Metamodels Nursing Patient satisfaction Patients Physicians Probability distribution Professionals Queuing theory Scheduling Sorting algorithms Statistical analysis |
title | Physician-Customized Strategies for Reducing Outpatient Waiting Time in South Korea Using Queueing Theory and Probabilistic Metamodels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A43%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physician-Customized%20Strategies%20for%20Reducing%20Outpatient%20Waiting%20Time%20in%20South%20Korea%20Using%20Queueing%20Theory%20and%20Probabilistic%20Metamodels&rft.jtitle=International%20journal%20of%20environmental%20research%20and%20public%20health&rft.au=Lee,%20Hanbit&rft.date=2022-02-12&rft.volume=19&rft.issue=4&rft.spage=2073&rft.pages=2073-&rft.issn=1660-4601&rft.eissn=1660-4601&rft_id=info:doi/10.3390/ijerph19042073&rft_dat=%3Cproquest_pubme%3E2632971895%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-633f9731e8404b69d606c10897b6f417829dc142a89a3e40d444e236c770f51d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2632971895&rft_id=info:pmid/35206259&rfr_iscdi=true |