Loading…

Physician-Customized Strategies for Reducing Outpatient Waiting Time in South Korea Using Queueing Theory and Probabilistic Metamodels

The time a patient spends waiting to be seen by a healthcare professional is an important determinant of patient satisfaction in outpatient care. Hence, it is crucial to identify parameters that affect the waiting time and optimize it accordingly. First, statistical analysis was used to validate the...

Full description

Saved in:
Bibliographic Details
Published in:International journal of environmental research and public health 2022-02, Vol.19 (4), p.2073
Main Authors: Lee, Hanbit, Choi, Eun Kyoung, Min, Kyung A, Bae, Eunjeong, Lee, Hooyun, Lee, Jongsoo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-633f9731e8404b69d606c10897b6f417829dc142a89a3e40d444e236c770f51d3
cites cdi_FETCH-LOGICAL-c418t-633f9731e8404b69d606c10897b6f417829dc142a89a3e40d444e236c770f51d3
container_end_page
container_issue 4
container_start_page 2073
container_title International journal of environmental research and public health
container_volume 19
creator Lee, Hanbit
Choi, Eun Kyoung
Min, Kyung A
Bae, Eunjeong
Lee, Hooyun
Lee, Jongsoo
description The time a patient spends waiting to be seen by a healthcare professional is an important determinant of patient satisfaction in outpatient care. Hence, it is crucial to identify parameters that affect the waiting time and optimize it accordingly. First, statistical analysis was used to validate the effective parameters. However, no parameters were found to have significant effects with respect to the entire outpatient department or to each department. Therefore, we studied the improvement of patient waiting times by analyzing and optimizing effective parameters for each physician. Queueing theory was used to calculate the probability that patients would wait for more than 30 min for a consultation session. Using this result, we built metamodels for each physician, formulated an effective method to optimize the problem, and found a solution to minimize waiting time using a non-dominated sorting genetic algorithm (NSGA-II). On average, we obtained a 30% decrease in the probability that patients would wait for a long period. This study shows the importance of customized improvement strategies for each physician.
doi_str_mv 10.3390/ijerph19042073
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8871932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2632971895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-633f9731e8404b69d606c10897b6f417829dc142a89a3e40d444e236c770f51d3</originalsourceid><addsrcrecordid>eNpdkUlvFDEQhVsIRBa4ckSWuHDp4G3c9gUJjVgiEiWQRBwtt1097VF3e_CCNPkB_O70kEUJJ5dcXz3Vq1dVbwg-YkzhD34NcdMThTnFDXtW7RMhcM0FJs8f1XvVQUprjJnkQr2s9tiCYkEXar_6e95vk7feTPWypBxGfw0OXeRoMqw8JNSFiH6CK9ZPK3RW8sZkD1NGv4zPu69LPwLyE7oIJffoe4hg0FXadX4UKPAP6SHELTKTQ-cxtKb1g0_ZW3QK2YzBwZBeVS86MyR4ffceVldfPl8uv9UnZ1-Pl59OasuJzLVgrFMNIyA55q1QTmBhCZaqaUXHSSOpcpZwaqQyDDh2nHOgTNimwd2COHZYfbzV3ZR2BGdnJ9EMehP9aOJWB-P1087ke70Kf7SUDVGMzgLv7wRi-F0gZT36ZGEYzAShJE3nFaWabytm9N1_6DqUOM32dhRVDZFqMVNHt5SNIaUI3cMyBOtdxPppxPPA28cWHvD7TNkNBrWk4A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632971895</pqid></control><display><type>article</type><title>Physician-Customized Strategies for Reducing Outpatient Waiting Time in South Korea Using Queueing Theory and Probabilistic Metamodels</title><source>ProQuest - Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lee, Hanbit ; Choi, Eun Kyoung ; Min, Kyung A ; Bae, Eunjeong ; Lee, Hooyun ; Lee, Jongsoo</creator><creatorcontrib>Lee, Hanbit ; Choi, Eun Kyoung ; Min, Kyung A ; Bae, Eunjeong ; Lee, Hooyun ; Lee, Jongsoo</creatorcontrib><description>The time a patient spends waiting to be seen by a healthcare professional is an important determinant of patient satisfaction in outpatient care. Hence, it is crucial to identify parameters that affect the waiting time and optimize it accordingly. First, statistical analysis was used to validate the effective parameters. However, no parameters were found to have significant effects with respect to the entire outpatient department or to each department. Therefore, we studied the improvement of patient waiting times by analyzing and optimizing effective parameters for each physician. Queueing theory was used to calculate the probability that patients would wait for more than 30 min for a consultation session. Using this result, we built metamodels for each physician, formulated an effective method to optimize the problem, and found a solution to minimize waiting time using a non-dominated sorting genetic algorithm (NSGA-II). On average, we obtained a 30% decrease in the probability that patients would wait for a long period. This study shows the importance of customized improvement strategies for each physician.</description><identifier>ISSN: 1660-4601</identifier><identifier>ISSN: 1661-7827</identifier><identifier>EISSN: 1660-4601</identifier><identifier>DOI: 10.3390/ijerph19042073</identifier><identifier>PMID: 35206259</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Customization ; Genetic algorithms ; Hospitals ; Metamodels ; Nursing ; Patient satisfaction ; Patients ; Physicians ; Probability distribution ; Professionals ; Queuing theory ; Scheduling ; Sorting algorithms ; Statistical analysis</subject><ispartof>International journal of environmental research and public health, 2022-02, Vol.19 (4), p.2073</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-633f9731e8404b69d606c10897b6f417829dc142a89a3e40d444e236c770f51d3</citedby><cites>FETCH-LOGICAL-c418t-633f9731e8404b69d606c10897b6f417829dc142a89a3e40d444e236c770f51d3</cites><orcidid>0000-0003-1583-8933 ; 0000-0001-7346-7902 ; 0000-0003-1941-1953 ; 0000-0003-4622-2437</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2632971895/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2632971895?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35206259$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Hanbit</creatorcontrib><creatorcontrib>Choi, Eun Kyoung</creatorcontrib><creatorcontrib>Min, Kyung A</creatorcontrib><creatorcontrib>Bae, Eunjeong</creatorcontrib><creatorcontrib>Lee, Hooyun</creatorcontrib><creatorcontrib>Lee, Jongsoo</creatorcontrib><title>Physician-Customized Strategies for Reducing Outpatient Waiting Time in South Korea Using Queueing Theory and Probabilistic Metamodels</title><title>International journal of environmental research and public health</title><addtitle>Int J Environ Res Public Health</addtitle><description>The time a patient spends waiting to be seen by a healthcare professional is an important determinant of patient satisfaction in outpatient care. Hence, it is crucial to identify parameters that affect the waiting time and optimize it accordingly. First, statistical analysis was used to validate the effective parameters. However, no parameters were found to have significant effects with respect to the entire outpatient department or to each department. Therefore, we studied the improvement of patient waiting times by analyzing and optimizing effective parameters for each physician. Queueing theory was used to calculate the probability that patients would wait for more than 30 min for a consultation session. Using this result, we built metamodels for each physician, formulated an effective method to optimize the problem, and found a solution to minimize waiting time using a non-dominated sorting genetic algorithm (NSGA-II). On average, we obtained a 30% decrease in the probability that patients would wait for a long period. This study shows the importance of customized improvement strategies for each physician.</description><subject>Customization</subject><subject>Genetic algorithms</subject><subject>Hospitals</subject><subject>Metamodels</subject><subject>Nursing</subject><subject>Patient satisfaction</subject><subject>Patients</subject><subject>Physicians</subject><subject>Probability distribution</subject><subject>Professionals</subject><subject>Queuing theory</subject><subject>Scheduling</subject><subject>Sorting algorithms</subject><subject>Statistical analysis</subject><issn>1660-4601</issn><issn>1661-7827</issn><issn>1660-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkUlvFDEQhVsIRBa4ckSWuHDp4G3c9gUJjVgiEiWQRBwtt1097VF3e_CCNPkB_O70kEUJJ5dcXz3Vq1dVbwg-YkzhD34NcdMThTnFDXtW7RMhcM0FJs8f1XvVQUprjJnkQr2s9tiCYkEXar_6e95vk7feTPWypBxGfw0OXeRoMqw8JNSFiH6CK9ZPK3RW8sZkD1NGv4zPu69LPwLyE7oIJffoe4hg0FXadX4UKPAP6SHELTKTQ-cxtKb1g0_ZW3QK2YzBwZBeVS86MyR4ffceVldfPl8uv9UnZ1-Pl59OasuJzLVgrFMNIyA55q1QTmBhCZaqaUXHSSOpcpZwaqQyDDh2nHOgTNimwd2COHZYfbzV3ZR2BGdnJ9EMehP9aOJWB-P1087ke70Kf7SUDVGMzgLv7wRi-F0gZT36ZGEYzAShJE3nFaWabytm9N1_6DqUOM32dhRVDZFqMVNHt5SNIaUI3cMyBOtdxPppxPPA28cWHvD7TNkNBrWk4A</recordid><startdate>20220212</startdate><enddate>20220212</enddate><creator>Lee, Hanbit</creator><creator>Choi, Eun Kyoung</creator><creator>Min, Kyung A</creator><creator>Bae, Eunjeong</creator><creator>Lee, Hooyun</creator><creator>Lee, Jongsoo</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1583-8933</orcidid><orcidid>https://orcid.org/0000-0001-7346-7902</orcidid><orcidid>https://orcid.org/0000-0003-1941-1953</orcidid><orcidid>https://orcid.org/0000-0003-4622-2437</orcidid></search><sort><creationdate>20220212</creationdate><title>Physician-Customized Strategies for Reducing Outpatient Waiting Time in South Korea Using Queueing Theory and Probabilistic Metamodels</title><author>Lee, Hanbit ; Choi, Eun Kyoung ; Min, Kyung A ; Bae, Eunjeong ; Lee, Hooyun ; Lee, Jongsoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-633f9731e8404b69d606c10897b6f417829dc142a89a3e40d444e236c770f51d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Customization</topic><topic>Genetic algorithms</topic><topic>Hospitals</topic><topic>Metamodels</topic><topic>Nursing</topic><topic>Patient satisfaction</topic><topic>Patients</topic><topic>Physicians</topic><topic>Probability distribution</topic><topic>Professionals</topic><topic>Queuing theory</topic><topic>Scheduling</topic><topic>Sorting algorithms</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hanbit</creatorcontrib><creatorcontrib>Choi, Eun Kyoung</creatorcontrib><creatorcontrib>Min, Kyung A</creatorcontrib><creatorcontrib>Bae, Eunjeong</creatorcontrib><creatorcontrib>Lee, Hooyun</creatorcontrib><creatorcontrib>Lee, Jongsoo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of environmental research and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hanbit</au><au>Choi, Eun Kyoung</au><au>Min, Kyung A</au><au>Bae, Eunjeong</au><au>Lee, Hooyun</au><au>Lee, Jongsoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physician-Customized Strategies for Reducing Outpatient Waiting Time in South Korea Using Queueing Theory and Probabilistic Metamodels</atitle><jtitle>International journal of environmental research and public health</jtitle><addtitle>Int J Environ Res Public Health</addtitle><date>2022-02-12</date><risdate>2022</risdate><volume>19</volume><issue>4</issue><spage>2073</spage><pages>2073-</pages><issn>1660-4601</issn><issn>1661-7827</issn><eissn>1660-4601</eissn><abstract>The time a patient spends waiting to be seen by a healthcare professional is an important determinant of patient satisfaction in outpatient care. Hence, it is crucial to identify parameters that affect the waiting time and optimize it accordingly. First, statistical analysis was used to validate the effective parameters. However, no parameters were found to have significant effects with respect to the entire outpatient department or to each department. Therefore, we studied the improvement of patient waiting times by analyzing and optimizing effective parameters for each physician. Queueing theory was used to calculate the probability that patients would wait for more than 30 min for a consultation session. Using this result, we built metamodels for each physician, formulated an effective method to optimize the problem, and found a solution to minimize waiting time using a non-dominated sorting genetic algorithm (NSGA-II). On average, we obtained a 30% decrease in the probability that patients would wait for a long period. This study shows the importance of customized improvement strategies for each physician.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35206259</pmid><doi>10.3390/ijerph19042073</doi><orcidid>https://orcid.org/0000-0003-1583-8933</orcidid><orcidid>https://orcid.org/0000-0001-7346-7902</orcidid><orcidid>https://orcid.org/0000-0003-1941-1953</orcidid><orcidid>https://orcid.org/0000-0003-4622-2437</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1660-4601
ispartof International journal of environmental research and public health, 2022-02, Vol.19 (4), p.2073
issn 1660-4601
1661-7827
1660-4601
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8871932
source ProQuest - Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry
subjects Customization
Genetic algorithms
Hospitals
Metamodels
Nursing
Patient satisfaction
Patients
Physicians
Probability distribution
Professionals
Queuing theory
Scheduling
Sorting algorithms
Statistical analysis
title Physician-Customized Strategies for Reducing Outpatient Waiting Time in South Korea Using Queueing Theory and Probabilistic Metamodels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A43%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physician-Customized%20Strategies%20for%20Reducing%20Outpatient%20Waiting%20Time%20in%20South%20Korea%20Using%20Queueing%20Theory%20and%20Probabilistic%20Metamodels&rft.jtitle=International%20journal%20of%20environmental%20research%20and%20public%20health&rft.au=Lee,%20Hanbit&rft.date=2022-02-12&rft.volume=19&rft.issue=4&rft.spage=2073&rft.pages=2073-&rft.issn=1660-4601&rft.eissn=1660-4601&rft_id=info:doi/10.3390/ijerph19042073&rft_dat=%3Cproquest_pubme%3E2632971895%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-633f9731e8404b69d606c10897b6f417829dc142a89a3e40d444e236c770f51d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2632971895&rft_id=info:pmid/35206259&rfr_iscdi=true