Loading…
Molecular basis of force-pCa relation in MYL2 cardiomyopathy mice: Role of the super-relaxed state of myosin
In this study, we investigated the role of the super-relaxed (SRX) state of myosin in the structure–function relationship of sarcomeres in the hearts of mouse models of cardiomyopathy-bearing mutations in the human ventricular regulatory light chain (RLC, MYL2 gene). Skinned papillary muscles from h...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2022-02, Vol.119 (8), p.1-10 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c470t-fa996c003886a8770cd37f47f4069a46e35a3ff84b088bf4f699369ca22f20823 |
---|---|
cites | cdi_FETCH-LOGICAL-c470t-fa996c003886a8770cd37f47f4069a46e35a3ff84b088bf4f699369ca22f20823 |
container_end_page | 10 |
container_issue | 8 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 119 |
creator | Yuan, Chen-Ching Kazmierczak, Katarzyna Liang, Jingsheng Ma, Weikang Irving, Thomas C. Szczesna-Cordary, Danuta |
description | In this study, we investigated the role of the super-relaxed (SRX) state of myosin in the structure–function relationship of sarcomeres in the hearts of mouse models of cardiomyopathy-bearing mutations in the human ventricular regulatory light chain (RLC, MYL2 gene). Skinned papillary muscles from hypertrophic (HCM–D166V) and dilated (DCM–D94A) cardiomyopathy models were subjected to small-angle X-ray diffraction simultaneously with isometric force measurements to obtain the interfilament lattice spacing and equatorial intensity ratios (I11/I10) together with the force-pCa relationship over a full range of [Ca2+] and at a sarcomere length of 2.1 μm. In parallel, we studied the effect of mutations on the ATP-dependent myosin energetic states. Compared with wild-type (WT) and DCM–D94A mice, HCM–D166V significantly increased the Ca2+ sensitivity of force and left shifted the I11/I10-pCa relationship, indicating an apparent movement of HCM–D166V cross-bridges closer to actin-containing thin filaments, thereby allowing for their premature Ca2+ activation. The HCM–D166V model also disrupted the SRX state and promoted an SRX-to-DRX (super-relaxed to disordered relaxed) transition that correlated with an HCM-linked phenotype of hypercontractility. While this dysregulation of SRX ↔ DRX equilibrium was consistent with repositioning of myosin motors closer to the thin filaments and with increased force-pCa dependence for HCM–D166V, the DCM–D94A model favored the energy-conserving SRX state, but the structure/function–pCa data were similar to WT. Our results suggest that the mutation-induced redistribution of myosin energetic states is one of the key mechanisms contributing to the development of complex clinical phenotypes associated with human HCM–D166V and DCM–D94A mutations. |
doi_str_mv | 10.1073/pnas.2110328119 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8872785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27118690</jstor_id><sourcerecordid>27118690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-fa996c003886a8770cd37f47f4069a46e35a3ff84b088bf4f699369ca22f20823</originalsourceid><addsrcrecordid>eNpdkctvEzEQxi1ERdOWMyfQCi5cth0_1o8LUhVRQErVSzlwshzHJo527cX2IuW_Z6OU8JBGmsP85pvHh9ArDNcYBL0ZoynXBGOgRGKsnqEFBoVbzhQ8RwsAIlrJCDtHF6XsAEB1El6gc9phIZjAC3R7n3pnp97kZm1KKE3yjU_ZunZcmia73tSQYhNic_9tRRpr8iakYZ9GU7f7ZgjWXaEzb_riXj7lS_T17uPj8nO7evj0ZXm7ai0TUFtvlOIWgErJjRQC7IYKz-YArgzjjnaGei_ZGqRce-a5UpQrawjxBCShl-jDUXec1oPbWBdrNr0ecxhM3utkgv63EsNWf08_tZSCCNnNAm-PAqnUoIsN1dmtTTE6WzWWHaf8MOX905ScfkyuVD2EYl3fm-jSVDThFBTBBNMZffcfuktTjvMPDhQDAsDUTN0cKZtTKdn508YY9MFDffBQ__Fw7njz96En_rdpM_D6COxKTflUJwJjyRXQX2mTn6E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634020049</pqid></control><display><type>article</type><title>Molecular basis of force-pCa relation in MYL2 cardiomyopathy mice: Role of the super-relaxed state of myosin</title><source>PubMed Central</source><creator>Yuan, Chen-Ching ; Kazmierczak, Katarzyna ; Liang, Jingsheng ; Ma, Weikang ; Irving, Thomas C. ; Szczesna-Cordary, Danuta</creator><creatorcontrib>Yuan, Chen-Ching ; Kazmierczak, Katarzyna ; Liang, Jingsheng ; Ma, Weikang ; Irving, Thomas C. ; Szczesna-Cordary, Danuta ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>In this study, we investigated the role of the super-relaxed (SRX) state of myosin in the structure–function relationship of sarcomeres in the hearts of mouse models of cardiomyopathy-bearing mutations in the human ventricular regulatory light chain (RLC, MYL2 gene). Skinned papillary muscles from hypertrophic (HCM–D166V) and dilated (DCM–D94A) cardiomyopathy models were subjected to small-angle X-ray diffraction simultaneously with isometric force measurements to obtain the interfilament lattice spacing and equatorial intensity ratios (I11/I10) together with the force-pCa relationship over a full range of [Ca2+] and at a sarcomere length of 2.1 μm. In parallel, we studied the effect of mutations on the ATP-dependent myosin energetic states. Compared with wild-type (WT) and DCM–D94A mice, HCM–D166V significantly increased the Ca2+ sensitivity of force and left shifted the I11/I10-pCa relationship, indicating an apparent movement of HCM–D166V cross-bridges closer to actin-containing thin filaments, thereby allowing for their premature Ca2+ activation. The HCM–D166V model also disrupted the SRX state and promoted an SRX-to-DRX (super-relaxed to disordered relaxed) transition that correlated with an HCM-linked phenotype of hypercontractility. While this dysregulation of SRX ↔ DRX equilibrium was consistent with repositioning of myosin motors closer to the thin filaments and with increased force-pCa dependence for HCM–D166V, the DCM–D94A model favored the energy-conserving SRX state, but the structure/function–pCa data were similar to WT. Our results suggest that the mutation-induced redistribution of myosin energetic states is one of the key mechanisms contributing to the development of complex clinical phenotypes associated with human HCM–D166V and DCM–D94A mutations.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2110328119</identifier><identifier>PMID: 35177471</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Actin ; Actins - metabolism ; Animal models ; Animals ; BASIC BIOLOGICAL SCIENCES ; Biological Sciences ; Calcium ; Calcium ions ; Cardiac Myosins - genetics ; Cardiac Myosins - metabolism ; Cardiomyopathies - genetics ; Cardiomyopathies - metabolism ; Cardiomyopathy ; Cardiomyopathy, Hypertrophic - genetics ; Disease Models, Animal ; Energy conservation ; equatorial intensity ratio ; Female ; Filaments ; Force measurement ; Humans ; Hypertrophy - metabolism ; interfilament lattice spacing ; Isometric ; isometric force ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Muscles ; Mutation ; Myl2 gene ; Myocardial Contraction - genetics ; Myosin ; Myosin Light Chains - genetics ; Myosin Light Chains - metabolism ; Myosins - metabolism ; Myosins - physiology ; Phenotype ; Phenotypes ; Phosphorylation ; Sarcomeres ; Sarcomeres - metabolism ; Structure-Activity Relationship ; Structure-function relationships ; super-relaxed state of myosin ; transgenic RLC mice ; Ventricle ; X-ray diffraction ; X-Ray Diffraction - methods</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-02, Vol.119 (8), p.1-10</ispartof><rights>Copyright National Academy of Sciences Feb 22, 2022</rights><rights>2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-fa996c003886a8770cd37f47f4069a46e35a3ff84b088bf4f699369ca22f20823</citedby><cites>FETCH-LOGICAL-c470t-fa996c003886a8770cd37f47f4069a46e35a3ff84b088bf4f699369ca22f20823</cites><orcidid>0000-0002-8441-0722 ; 0000-0003-4848-3323 ; 0000000284410722 ; 0000000348483323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872785/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872785/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35177471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1856362$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Chen-Ching</creatorcontrib><creatorcontrib>Kazmierczak, Katarzyna</creatorcontrib><creatorcontrib>Liang, Jingsheng</creatorcontrib><creatorcontrib>Ma, Weikang</creatorcontrib><creatorcontrib>Irving, Thomas C.</creatorcontrib><creatorcontrib>Szczesna-Cordary, Danuta</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Molecular basis of force-pCa relation in MYL2 cardiomyopathy mice: Role of the super-relaxed state of myosin</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>In this study, we investigated the role of the super-relaxed (SRX) state of myosin in the structure–function relationship of sarcomeres in the hearts of mouse models of cardiomyopathy-bearing mutations in the human ventricular regulatory light chain (RLC, MYL2 gene). Skinned papillary muscles from hypertrophic (HCM–D166V) and dilated (DCM–D94A) cardiomyopathy models were subjected to small-angle X-ray diffraction simultaneously with isometric force measurements to obtain the interfilament lattice spacing and equatorial intensity ratios (I11/I10) together with the force-pCa relationship over a full range of [Ca2+] and at a sarcomere length of 2.1 μm. In parallel, we studied the effect of mutations on the ATP-dependent myosin energetic states. Compared with wild-type (WT) and DCM–D94A mice, HCM–D166V significantly increased the Ca2+ sensitivity of force and left shifted the I11/I10-pCa relationship, indicating an apparent movement of HCM–D166V cross-bridges closer to actin-containing thin filaments, thereby allowing for their premature Ca2+ activation. The HCM–D166V model also disrupted the SRX state and promoted an SRX-to-DRX (super-relaxed to disordered relaxed) transition that correlated with an HCM-linked phenotype of hypercontractility. While this dysregulation of SRX ↔ DRX equilibrium was consistent with repositioning of myosin motors closer to the thin filaments and with increased force-pCa dependence for HCM–D166V, the DCM–D94A model favored the energy-conserving SRX state, but the structure/function–pCa data were similar to WT. Our results suggest that the mutation-induced redistribution of myosin energetic states is one of the key mechanisms contributing to the development of complex clinical phenotypes associated with human HCM–D166V and DCM–D94A mutations.</description><subject>Actin</subject><subject>Actins - metabolism</subject><subject>Animal models</subject><subject>Animals</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biological Sciences</subject><subject>Calcium</subject><subject>Calcium ions</subject><subject>Cardiac Myosins - genetics</subject><subject>Cardiac Myosins - metabolism</subject><subject>Cardiomyopathies - genetics</subject><subject>Cardiomyopathies - metabolism</subject><subject>Cardiomyopathy</subject><subject>Cardiomyopathy, Hypertrophic - genetics</subject><subject>Disease Models, Animal</subject><subject>Energy conservation</subject><subject>equatorial intensity ratio</subject><subject>Female</subject><subject>Filaments</subject><subject>Force measurement</subject><subject>Humans</subject><subject>Hypertrophy - metabolism</subject><subject>interfilament lattice spacing</subject><subject>Isometric</subject><subject>isometric force</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Muscles</subject><subject>Mutation</subject><subject>Myl2 gene</subject><subject>Myocardial Contraction - genetics</subject><subject>Myosin</subject><subject>Myosin Light Chains - genetics</subject><subject>Myosin Light Chains - metabolism</subject><subject>Myosins - metabolism</subject><subject>Myosins - physiology</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phosphorylation</subject><subject>Sarcomeres</subject><subject>Sarcomeres - metabolism</subject><subject>Structure-Activity Relationship</subject><subject>Structure-function relationships</subject><subject>super-relaxed state of myosin</subject><subject>transgenic RLC mice</subject><subject>Ventricle</subject><subject>X-ray diffraction</subject><subject>X-Ray Diffraction - methods</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkctvEzEQxi1ERdOWMyfQCi5cth0_1o8LUhVRQErVSzlwshzHJo527cX2IuW_Z6OU8JBGmsP85pvHh9ArDNcYBL0ZoynXBGOgRGKsnqEFBoVbzhQ8RwsAIlrJCDtHF6XsAEB1El6gc9phIZjAC3R7n3pnp97kZm1KKE3yjU_ZunZcmia73tSQYhNic_9tRRpr8iakYZ9GU7f7ZgjWXaEzb_riXj7lS_T17uPj8nO7evj0ZXm7ai0TUFtvlOIWgErJjRQC7IYKz-YArgzjjnaGei_ZGqRce-a5UpQrawjxBCShl-jDUXec1oPbWBdrNr0ecxhM3utkgv63EsNWf08_tZSCCNnNAm-PAqnUoIsN1dmtTTE6WzWWHaf8MOX905ScfkyuVD2EYl3fm-jSVDThFBTBBNMZffcfuktTjvMPDhQDAsDUTN0cKZtTKdn508YY9MFDffBQ__Fw7njz96En_rdpM_D6COxKTflUJwJjyRXQX2mTn6E</recordid><startdate>20220222</startdate><enddate>20220222</enddate><creator>Yuan, Chen-Ching</creator><creator>Kazmierczak, Katarzyna</creator><creator>Liang, Jingsheng</creator><creator>Ma, Weikang</creator><creator>Irving, Thomas C.</creator><creator>Szczesna-Cordary, Danuta</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8441-0722</orcidid><orcidid>https://orcid.org/0000-0003-4848-3323</orcidid><orcidid>https://orcid.org/0000000284410722</orcidid><orcidid>https://orcid.org/0000000348483323</orcidid></search><sort><creationdate>20220222</creationdate><title>Molecular basis of force-pCa relation in MYL2 cardiomyopathy mice</title><author>Yuan, Chen-Ching ; Kazmierczak, Katarzyna ; Liang, Jingsheng ; Ma, Weikang ; Irving, Thomas C. ; Szczesna-Cordary, Danuta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-fa996c003886a8770cd37f47f4069a46e35a3ff84b088bf4f699369ca22f20823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actin</topic><topic>Actins - metabolism</topic><topic>Animal models</topic><topic>Animals</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biological Sciences</topic><topic>Calcium</topic><topic>Calcium ions</topic><topic>Cardiac Myosins - genetics</topic><topic>Cardiac Myosins - metabolism</topic><topic>Cardiomyopathies - genetics</topic><topic>Cardiomyopathies - metabolism</topic><topic>Cardiomyopathy</topic><topic>Cardiomyopathy, Hypertrophic - genetics</topic><topic>Disease Models, Animal</topic><topic>Energy conservation</topic><topic>equatorial intensity ratio</topic><topic>Female</topic><topic>Filaments</topic><topic>Force measurement</topic><topic>Humans</topic><topic>Hypertrophy - metabolism</topic><topic>interfilament lattice spacing</topic><topic>Isometric</topic><topic>isometric force</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Muscles</topic><topic>Mutation</topic><topic>Myl2 gene</topic><topic>Myocardial Contraction - genetics</topic><topic>Myosin</topic><topic>Myosin Light Chains - genetics</topic><topic>Myosin Light Chains - metabolism</topic><topic>Myosins - metabolism</topic><topic>Myosins - physiology</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phosphorylation</topic><topic>Sarcomeres</topic><topic>Sarcomeres - metabolism</topic><topic>Structure-Activity Relationship</topic><topic>Structure-function relationships</topic><topic>super-relaxed state of myosin</topic><topic>transgenic RLC mice</topic><topic>Ventricle</topic><topic>X-ray diffraction</topic><topic>X-Ray Diffraction - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Chen-Ching</creatorcontrib><creatorcontrib>Kazmierczak, Katarzyna</creatorcontrib><creatorcontrib>Liang, Jingsheng</creatorcontrib><creatorcontrib>Ma, Weikang</creatorcontrib><creatorcontrib>Irving, Thomas C.</creatorcontrib><creatorcontrib>Szczesna-Cordary, Danuta</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Chen-Ching</au><au>Kazmierczak, Katarzyna</au><au>Liang, Jingsheng</au><au>Ma, Weikang</au><au>Irving, Thomas C.</au><au>Szczesna-Cordary, Danuta</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular basis of force-pCa relation in MYL2 cardiomyopathy mice: Role of the super-relaxed state of myosin</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-02-22</date><risdate>2022</risdate><volume>119</volume><issue>8</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>In this study, we investigated the role of the super-relaxed (SRX) state of myosin in the structure–function relationship of sarcomeres in the hearts of mouse models of cardiomyopathy-bearing mutations in the human ventricular regulatory light chain (RLC, MYL2 gene). Skinned papillary muscles from hypertrophic (HCM–D166V) and dilated (DCM–D94A) cardiomyopathy models were subjected to small-angle X-ray diffraction simultaneously with isometric force measurements to obtain the interfilament lattice spacing and equatorial intensity ratios (I11/I10) together with the force-pCa relationship over a full range of [Ca2+] and at a sarcomere length of 2.1 μm. In parallel, we studied the effect of mutations on the ATP-dependent myosin energetic states. Compared with wild-type (WT) and DCM–D94A mice, HCM–D166V significantly increased the Ca2+ sensitivity of force and left shifted the I11/I10-pCa relationship, indicating an apparent movement of HCM–D166V cross-bridges closer to actin-containing thin filaments, thereby allowing for their premature Ca2+ activation. The HCM–D166V model also disrupted the SRX state and promoted an SRX-to-DRX (super-relaxed to disordered relaxed) transition that correlated with an HCM-linked phenotype of hypercontractility. While this dysregulation of SRX ↔ DRX equilibrium was consistent with repositioning of myosin motors closer to the thin filaments and with increased force-pCa dependence for HCM–D166V, the DCM–D94A model favored the energy-conserving SRX state, but the structure/function–pCa data were similar to WT. Our results suggest that the mutation-induced redistribution of myosin energetic states is one of the key mechanisms contributing to the development of complex clinical phenotypes associated with human HCM–D166V and DCM–D94A mutations.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>35177471</pmid><doi>10.1073/pnas.2110328119</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8441-0722</orcidid><orcidid>https://orcid.org/0000-0003-4848-3323</orcidid><orcidid>https://orcid.org/0000000284410722</orcidid><orcidid>https://orcid.org/0000000348483323</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2022-02, Vol.119 (8), p.1-10 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8872785 |
source | PubMed Central |
subjects | Actin Actins - metabolism Animal models Animals BASIC BIOLOGICAL SCIENCES Biological Sciences Calcium Calcium ions Cardiac Myosins - genetics Cardiac Myosins - metabolism Cardiomyopathies - genetics Cardiomyopathies - metabolism Cardiomyopathy Cardiomyopathy, Hypertrophic - genetics Disease Models, Animal Energy conservation equatorial intensity ratio Female Filaments Force measurement Humans Hypertrophy - metabolism interfilament lattice spacing Isometric isometric force Male Mice Mice, Inbred C57BL Mice, Transgenic Muscles Mutation Myl2 gene Myocardial Contraction - genetics Myosin Myosin Light Chains - genetics Myosin Light Chains - metabolism Myosins - metabolism Myosins - physiology Phenotype Phenotypes Phosphorylation Sarcomeres Sarcomeres - metabolism Structure-Activity Relationship Structure-function relationships super-relaxed state of myosin transgenic RLC mice Ventricle X-ray diffraction X-Ray Diffraction - methods |
title | Molecular basis of force-pCa relation in MYL2 cardiomyopathy mice: Role of the super-relaxed state of myosin |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20basis%20of%20force-pCa%20relation%20in%20MYL2%20cardiomyopathy%20mice:%20Role%20of%20the%20super-relaxed%20state%20of%20myosin&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Yuan,%20Chen-Ching&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2022-02-22&rft.volume=119&rft.issue=8&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2110328119&rft_dat=%3Cjstor_pubme%3E27118690%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-fa996c003886a8770cd37f47f4069a46e35a3ff84b088bf4f699369ca22f20823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2634020049&rft_id=info:pmid/35177471&rft_jstor_id=27118690&rfr_iscdi=true |