Loading…

Hydrogen Generation by Hydrolysis of MgH2-LiH Composite

As a most promising material for hydrogen generation by hydrolysis, magnesium hydride (MgH2) is also trapped by its yielded byproduct Mg(OH)2 whose dense passivated layers prevent the further contact of intimal MgH2 with water. In this work, LiH, as a destroyer, has been added to promote the hydroge...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2022-02, Vol.15 (4), p.1593
Main Authors: Wu, Xiaojuan, Xue, Huaqing, Peng, Yong, Deng, Jifeng, Xie, Zewei, Zheng, Jie, Li, Xingguo, Li, Shuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As a most promising material for hydrogen generation by hydrolysis, magnesium hydride (MgH2) is also trapped by its yielded byproduct Mg(OH)2 whose dense passivated layers prevent the further contact of intimal MgH2 with water. In this work, LiH, as a destroyer, has been added to promote the hydrogen properties of MgH2. The results demonstrate that even 3 wt % LiH was added into MgH2-G, the hydrogen generation yield can increase about 72% compared to the hydrogen generation yield of MgH2-G. The possible mechanism is that Mg2+ from the hydrolysis of MgH2 preferentially bound with OH− ions from the hydrolysis of LiH to form Mg(OH)2 precipitation, which is dispersed in water rather than coated on the surface of MgH2. Moreover, adding MgCl2 into hydrolysis solution, using ball milling technology, and increasing the hydrolysis temperature can make the hydrolysis rate higher and reaction process more complete. It is noted that a too high weight ratio of LiH with too high of a hydrolysis temperature will make the reaction too violent to be safe in the experiment. We determinate the best experimental condition is that the LiH ratio added into MgH2 is 3 wt %, the hydrolysis temperature is 60 °C, and the concentration of MgCl2 hydrating solution is 1 M. MgH2-LiH composite hydrogen generation technology can meet the needs of various types of hydrogen supply and has broad application prospects.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15041593