Loading…
Prospects of Using Pseudobrookite as an Iron-Bearing Mineral for the Alkaline Electrolytic Production of Iron
The alkaline electrolytic production of iron is gaining interest due to the absence of CO emissions and significantly lower electrical energy consumption when compared with traditional steelmaking. The possibility of using an iron-bearing pseudobrookite mineral, Fe TiO , is explored for the first ti...
Saved in:
Published in: | Materials 2022-02, Vol.15 (4), p.1440 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c406t-a2456a389929598006f1393ff967b468778d03a9ce645459c3f9e69e857fb8d43 |
---|---|
cites | cdi_FETCH-LOGICAL-c406t-a2456a389929598006f1393ff967b468778d03a9ce645459c3f9e69e857fb8d43 |
container_end_page | |
container_issue | 4 |
container_start_page | 1440 |
container_title | Materials |
container_volume | 15 |
creator | Lopes, Daniela V Lisenkov, Aleksey D Ruivo, Luís C M Yaremchenko, Aleksey A Frade, Jorge R Kovalevsky, Andrei V |
description | The alkaline electrolytic production of iron is gaining interest due to the absence of CO
emissions and significantly lower electrical energy consumption when compared with traditional steelmaking. The possibility of using an iron-bearing pseudobrookite mineral, Fe
TiO
, is explored for the first time as an alternative feedstock for the electrochemical reduction process. To assess relevant impacts of the presence of titanium, similar electroreduction processes were also performed for Fe
TiO
·Fe
O
and Fe
O
. The electroreduction was attempted using dense and porous ceramic cathodes. Potentiostatic studies at the cathodic potentials of -1.15--1.30 V vs. an Hg|HgO|NaOH reference electrode and a galvanostatic approach at 1 A/cm
were used together with electroreduction from ceramic suspensions, obtained by grinding the porous ceramics. The complete electroreduction to Fe
was only possible at high cathodic polarizations (-1.30 V), compromising the current efficiencies of the electrochemical process due to the hydrogen evolution reaction impact. Microstructural evolution and phase composition studies are discussed, providing trends on the role of titanium and corresponding electrochemical mechanisms. Although the obtained results suggest that pseudobrookite is not a feasible material to be used alone as feedstock for the electrolytic iron production, it can be considered with other iron oxide materials and/or ores to promote electroreduction. |
doi_str_mv | 10.3390/ma15041440 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8879746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2633934489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-a2456a389929598006f1393ff967b468778d03a9ce645459c3f9e69e857fb8d43</originalsourceid><addsrcrecordid>eNpdkU1LBSEUhiWKimrTDwihTQRTzug4nk1Ql76gqEWtxetoWTN605mgf59D37lRjg8P7zkHoe2SHFAK5LBXZU1YyRhZQuslAC9KYGz513sNbaX0RPKhtBQVrKI1WlekgQbWUX8bQ1oYPSQcLL5Pzj_g22TGNsxjCM9uMFglrDy-jMEXJ0bFibh23kTVYRsiHh4NPu6eVZdr-LTLqhi6t8FpnNXtqAcX_OSeBJtoxaouma3PewPdn53ezS6Kq5vzy9nxVaEZ4UOhKlZzRQVABTUIQrgtKVBrgTdzxkXTiJZQBdpwVrMaNLVgOBhRN3YuWkY30NGHdzHOe9Nq44ccVy6i61V8k0E5-ffHu0f5EF6lEHksjGfB3qcghpfRpEH2LmnTdcqbMCZZ8Tx8ypiAjO7-Q5_CGH1ub6JyA00FIlP7H5TO807R2O8wJZHTIuXPIjO88zv-N_q1NvoOujyYeA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632957298</pqid></control><display><type>article</type><title>Prospects of Using Pseudobrookite as an Iron-Bearing Mineral for the Alkaline Electrolytic Production of Iron</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Lopes, Daniela V ; Lisenkov, Aleksey D ; Ruivo, Luís C M ; Yaremchenko, Aleksey A ; Frade, Jorge R ; Kovalevsky, Andrei V</creator><creatorcontrib>Lopes, Daniela V ; Lisenkov, Aleksey D ; Ruivo, Luís C M ; Yaremchenko, Aleksey A ; Frade, Jorge R ; Kovalevsky, Andrei V</creatorcontrib><description>The alkaline electrolytic production of iron is gaining interest due to the absence of CO
emissions and significantly lower electrical energy consumption when compared with traditional steelmaking. The possibility of using an iron-bearing pseudobrookite mineral, Fe
TiO
, is explored for the first time as an alternative feedstock for the electrochemical reduction process. To assess relevant impacts of the presence of titanium, similar electroreduction processes were also performed for Fe
TiO
·Fe
O
and Fe
O
. The electroreduction was attempted using dense and porous ceramic cathodes. Potentiostatic studies at the cathodic potentials of -1.15--1.30 V vs. an Hg|HgO|NaOH reference electrode and a galvanostatic approach at 1 A/cm
were used together with electroreduction from ceramic suspensions, obtained by grinding the porous ceramics. The complete electroreduction to Fe
was only possible at high cathodic polarizations (-1.30 V), compromising the current efficiencies of the electrochemical process due to the hydrogen evolution reaction impact. Microstructural evolution and phase composition studies are discussed, providing trends on the role of titanium and corresponding electrochemical mechanisms. Although the obtained results suggest that pseudobrookite is not a feasible material to be used alone as feedstock for the electrolytic iron production, it can be considered with other iron oxide materials and/or ores to promote electroreduction.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15041440</identifier><identifier>PMID: 35207979</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Cathodic polarization ; Ceramics ; Chemical reduction ; Cooling ; Electrodes ; Electrolytes ; Electrowinning ; Emissions ; Energy consumption ; Hydrogen ; Hydrogen evolution reactions ; Iron and steel making ; Iron oxides ; Phase composition ; Raw materials ; Steel production ; Titanium</subject><ispartof>Materials, 2022-02, Vol.15 (4), p.1440</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-a2456a389929598006f1393ff967b468778d03a9ce645459c3f9e69e857fb8d43</citedby><cites>FETCH-LOGICAL-c406t-a2456a389929598006f1393ff967b468778d03a9ce645459c3f9e69e857fb8d43</cites><orcidid>0000-0001-5814-9797 ; 0000-0002-6339-5009 ; 0000-0002-3837-5946 ; 0000-0003-0652-5070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2632957298/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2632957298?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35207979$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lopes, Daniela V</creatorcontrib><creatorcontrib>Lisenkov, Aleksey D</creatorcontrib><creatorcontrib>Ruivo, Luís C M</creatorcontrib><creatorcontrib>Yaremchenko, Aleksey A</creatorcontrib><creatorcontrib>Frade, Jorge R</creatorcontrib><creatorcontrib>Kovalevsky, Andrei V</creatorcontrib><title>Prospects of Using Pseudobrookite as an Iron-Bearing Mineral for the Alkaline Electrolytic Production of Iron</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The alkaline electrolytic production of iron is gaining interest due to the absence of CO
emissions and significantly lower electrical energy consumption when compared with traditional steelmaking. The possibility of using an iron-bearing pseudobrookite mineral, Fe
TiO
, is explored for the first time as an alternative feedstock for the electrochemical reduction process. To assess relevant impacts of the presence of titanium, similar electroreduction processes were also performed for Fe
TiO
·Fe
O
and Fe
O
. The electroreduction was attempted using dense and porous ceramic cathodes. Potentiostatic studies at the cathodic potentials of -1.15--1.30 V vs. an Hg|HgO|NaOH reference electrode and a galvanostatic approach at 1 A/cm
were used together with electroreduction from ceramic suspensions, obtained by grinding the porous ceramics. The complete electroreduction to Fe
was only possible at high cathodic polarizations (-1.30 V), compromising the current efficiencies of the electrochemical process due to the hydrogen evolution reaction impact. Microstructural evolution and phase composition studies are discussed, providing trends on the role of titanium and corresponding electrochemical mechanisms. Although the obtained results suggest that pseudobrookite is not a feasible material to be used alone as feedstock for the electrolytic iron production, it can be considered with other iron oxide materials and/or ores to promote electroreduction.</description><subject>Cathodic polarization</subject><subject>Ceramics</subject><subject>Chemical reduction</subject><subject>Cooling</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electrowinning</subject><subject>Emissions</subject><subject>Energy consumption</subject><subject>Hydrogen</subject><subject>Hydrogen evolution reactions</subject><subject>Iron and steel making</subject><subject>Iron oxides</subject><subject>Phase composition</subject><subject>Raw materials</subject><subject>Steel production</subject><subject>Titanium</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkU1LBSEUhiWKimrTDwihTQRTzug4nk1Ql76gqEWtxetoWTN605mgf59D37lRjg8P7zkHoe2SHFAK5LBXZU1YyRhZQuslAC9KYGz513sNbaX0RPKhtBQVrKI1WlekgQbWUX8bQ1oYPSQcLL5Pzj_g22TGNsxjCM9uMFglrDy-jMEXJ0bFibh23kTVYRsiHh4NPu6eVZdr-LTLqhi6t8FpnNXtqAcX_OSeBJtoxaouma3PewPdn53ezS6Kq5vzy9nxVaEZ4UOhKlZzRQVABTUIQrgtKVBrgTdzxkXTiJZQBdpwVrMaNLVgOBhRN3YuWkY30NGHdzHOe9Nq44ccVy6i61V8k0E5-ffHu0f5EF6lEHksjGfB3qcghpfRpEH2LmnTdcqbMCZZ8Tx8ypiAjO7-Q5_CGH1ub6JyA00FIlP7H5TO807R2O8wJZHTIuXPIjO88zv-N_q1NvoOujyYeA</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Lopes, Daniela V</creator><creator>Lisenkov, Aleksey D</creator><creator>Ruivo, Luís C M</creator><creator>Yaremchenko, Aleksey A</creator><creator>Frade, Jorge R</creator><creator>Kovalevsky, Andrei V</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5814-9797</orcidid><orcidid>https://orcid.org/0000-0002-6339-5009</orcidid><orcidid>https://orcid.org/0000-0002-3837-5946</orcidid><orcidid>https://orcid.org/0000-0003-0652-5070</orcidid></search><sort><creationdate>20220215</creationdate><title>Prospects of Using Pseudobrookite as an Iron-Bearing Mineral for the Alkaline Electrolytic Production of Iron</title><author>Lopes, Daniela V ; Lisenkov, Aleksey D ; Ruivo, Luís C M ; Yaremchenko, Aleksey A ; Frade, Jorge R ; Kovalevsky, Andrei V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-a2456a389929598006f1393ff967b468778d03a9ce645459c3f9e69e857fb8d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cathodic polarization</topic><topic>Ceramics</topic><topic>Chemical reduction</topic><topic>Cooling</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electrowinning</topic><topic>Emissions</topic><topic>Energy consumption</topic><topic>Hydrogen</topic><topic>Hydrogen evolution reactions</topic><topic>Iron and steel making</topic><topic>Iron oxides</topic><topic>Phase composition</topic><topic>Raw materials</topic><topic>Steel production</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopes, Daniela V</creatorcontrib><creatorcontrib>Lisenkov, Aleksey D</creatorcontrib><creatorcontrib>Ruivo, Luís C M</creatorcontrib><creatorcontrib>Yaremchenko, Aleksey A</creatorcontrib><creatorcontrib>Frade, Jorge R</creatorcontrib><creatorcontrib>Kovalevsky, Andrei V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopes, Daniela V</au><au>Lisenkov, Aleksey D</au><au>Ruivo, Luís C M</au><au>Yaremchenko, Aleksey A</au><au>Frade, Jorge R</au><au>Kovalevsky, Andrei V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prospects of Using Pseudobrookite as an Iron-Bearing Mineral for the Alkaline Electrolytic Production of Iron</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-02-15</date><risdate>2022</risdate><volume>15</volume><issue>4</issue><spage>1440</spage><pages>1440-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The alkaline electrolytic production of iron is gaining interest due to the absence of CO
emissions and significantly lower electrical energy consumption when compared with traditional steelmaking. The possibility of using an iron-bearing pseudobrookite mineral, Fe
TiO
, is explored for the first time as an alternative feedstock for the electrochemical reduction process. To assess relevant impacts of the presence of titanium, similar electroreduction processes were also performed for Fe
TiO
·Fe
O
and Fe
O
. The electroreduction was attempted using dense and porous ceramic cathodes. Potentiostatic studies at the cathodic potentials of -1.15--1.30 V vs. an Hg|HgO|NaOH reference electrode and a galvanostatic approach at 1 A/cm
were used together with electroreduction from ceramic suspensions, obtained by grinding the porous ceramics. The complete electroreduction to Fe
was only possible at high cathodic polarizations (-1.30 V), compromising the current efficiencies of the electrochemical process due to the hydrogen evolution reaction impact. Microstructural evolution and phase composition studies are discussed, providing trends on the role of titanium and corresponding electrochemical mechanisms. Although the obtained results suggest that pseudobrookite is not a feasible material to be used alone as feedstock for the electrolytic iron production, it can be considered with other iron oxide materials and/or ores to promote electroreduction.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35207979</pmid><doi>10.3390/ma15041440</doi><orcidid>https://orcid.org/0000-0001-5814-9797</orcidid><orcidid>https://orcid.org/0000-0002-6339-5009</orcidid><orcidid>https://orcid.org/0000-0002-3837-5946</orcidid><orcidid>https://orcid.org/0000-0003-0652-5070</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-02, Vol.15 (4), p.1440 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8879746 |
source | PubMed (Medline); Publicly Available Content Database; Free Full-Text Journals in Chemistry |
subjects | Cathodic polarization Ceramics Chemical reduction Cooling Electrodes Electrolytes Electrowinning Emissions Energy consumption Hydrogen Hydrogen evolution reactions Iron and steel making Iron oxides Phase composition Raw materials Steel production Titanium |
title | Prospects of Using Pseudobrookite as an Iron-Bearing Mineral for the Alkaline Electrolytic Production of Iron |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A10%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prospects%20of%20Using%20Pseudobrookite%20as%20an%20Iron-Bearing%20Mineral%20for%20the%20Alkaline%20Electrolytic%20Production%20of%20Iron&rft.jtitle=Materials&rft.au=Lopes,%20Daniela%20V&rft.date=2022-02-15&rft.volume=15&rft.issue=4&rft.spage=1440&rft.pages=1440-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15041440&rft_dat=%3Cproquest_pubme%3E2633934489%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-a2456a389929598006f1393ff967b468778d03a9ce645459c3f9e69e857fb8d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2632957298&rft_id=info:pmid/35207979&rfr_iscdi=true |