Loading…

Effect of sorghum flour properties on gluten-free sponge cake

As the demand for gluten-free products increases, the use of sorghum flour becomes a good alternative. Sponge cakes are consumed worldwide and suitable for formulations that could replace wheat flour. One of the most influential parameters on sponge cake quality is the flour particle size. In this s...

Full description

Saved in:
Bibliographic Details
Published in:Journal of food science and technology 2022-04, Vol.59 (4), p.1407-1418
Main Authors: Curti, María Isabel, Belorio, Mayara, Palavecino, Pablo M., Camiña, José Manuel, Ribotta, Pablo D., Gómez, Manuel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As the demand for gluten-free products increases, the use of sorghum flour becomes a good alternative. Sponge cakes are consumed worldwide and suitable for formulations that could replace wheat flour. One of the most influential parameters on sponge cake quality is the flour particle size. In this study, we obtained and characterized different flours by milling white and brown sorghum grains and evaluated the influence of flour characteristics on batter properties and gluten-free sponge cake quality. Flours were produced by pearling, milling and sifting; and were characterized for flour composition, particle size distribution, damaged starch and water absorption. The structure, density, and viscosity of the batters; and specific volume and crumb properties of the sponge cake were evaluated. The results showed that flour composition, and properties were modified by the milling processes. Pasting viscosity increased as the particle size of the flours was reduced. Brown or white sorghum flour with smaller particle size produced high density and viscosity batters with small and homogeneous air bubbles distribution. Independently of the sorghum variety used, smaller particle size flour leads to sponge cakes of high volume and low firmness.
ISSN:0022-1155
0975-8402
DOI:10.1007/s13197-021-05150-0