Loading…
Computational Models of Auxin-Driven Patterning in Shoots
Auxin regulates many aspects of plant development and behavior, including the initiation of new outgrowth, patterning of vascular systems, control of branching, and responses to the environment. Computational models have complemented experimental studies of these processes. We review these models fr...
Saved in:
Published in: | Cold Spring Harbor perspectives in biology 2022-03, Vol.14 (3), p.a040097 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c499t-3d5c5bb9cbc73e9017311c5028ffce568c88a3743337c423e69a6874b3808be33 |
---|---|
cites | cdi_FETCH-LOGICAL-c499t-3d5c5bb9cbc73e9017311c5028ffce568c88a3743337c423e69a6874b3808be33 |
container_end_page | |
container_issue | 3 |
container_start_page | a040097 |
container_title | Cold Spring Harbor perspectives in biology |
container_volume | 14 |
creator | Cieslak, Mikolaj Owens, Andrew Prusinkiewicz, Przemyslaw |
description | Auxin regulates many aspects of plant development and behavior, including the initiation of new outgrowth, patterning of vascular systems, control of branching, and responses to the environment. Computational models have complemented experimental studies of these processes. We review these models from two perspectives. First, we consider cellular and tissue-level models of interaction between auxin and its transporters in shoots. These models form a coherent body of results exploring different hypotheses pertinent to the patterning of new outgrowth and vascular strands. Second, we consider models operating at the level of plant organs and entire plants. We highlight techniques used to reduce the complexity of these models, which provide a path to capturing the essence of studied phenomena while running simulations efficiently. |
doi_str_mv | 10.1101/cshperspect.a040097 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8886983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2639035009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-3d5c5bb9cbc73e9017311c5028ffce568c88a3743337c423e69a6874b3808be33</originalsourceid><addsrcrecordid>eNpdkVtLAzEQhYMotlZ_gSALvviyNdnZS_IilHqFioL6HLJptk3ZJmuSLfrv3dJaqk8zMN8c5sxB6JzgISGYXEs_b5TzjZJhKHCKMSsOUJ-wFGKc5OnhXt9DJ94vMM5zRvNj1IOOJhmQPmJju2zaIIK2RtTRs52q2ke2ikbtlzbxrdMrZaJXEYJyRptZpE30Nrc2-FN0VInaq7NtHaCP-7v38WM8eXl4Go8msUwZCzFMM5mVJZOlLEAxTAogRGY4oVUlVZZTSamAIgWAQqYJqJyJnBZpCRTTUgEM0M1Gt2nLpZpKZYITNW-cXgr3za3Q_O_E6Dmf2RWnlHZ21wJXWwFnP1vlA19qL1VdC6Ns63mSJZQmGBekQy__oQvbuu4xHZUDw5B1X-4o2FDSWe-dqnbHEMzX0fC9aPg2mm7rYt_Hbuc3C_gB-WyNNg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639035009</pqid></control><display><type>article</type><title>Computational Models of Auxin-Driven Patterning in Shoots</title><source>PubMed (Medline)</source><creator>Cieslak, Mikolaj ; Owens, Andrew ; Prusinkiewicz, Przemyslaw</creator><creatorcontrib>Cieslak, Mikolaj ; Owens, Andrew ; Prusinkiewicz, Przemyslaw</creatorcontrib><description>Auxin regulates many aspects of plant development and behavior, including the initiation of new outgrowth, patterning of vascular systems, control of branching, and responses to the environment. Computational models have complemented experimental studies of these processes. We review these models from two perspectives. First, we consider cellular and tissue-level models of interaction between auxin and its transporters in shoots. These models form a coherent body of results exploring different hypotheses pertinent to the patterning of new outgrowth and vascular strands. Second, we consider models operating at the level of plant organs and entire plants. We highlight techniques used to reduce the complexity of these models, which provide a path to capturing the essence of studied phenomena while running simulations efficiently.</description><identifier>ISSN: 1943-0264</identifier><identifier>EISSN: 1943-0264</identifier><identifier>DOI: 10.1101/cshperspect.a040097</identifier><identifier>PMID: 34001531</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Auxins ; Biological Transport ; Computer applications ; Computer Simulation ; Environment models ; Indoleacetic Acids - metabolism ; Mathematical models ; Membrane Transport Proteins - metabolism ; Models, Biological ; Organs ; PERSPECTIVES ; Plant Development ; Plants - metabolism ; Shoots</subject><ispartof>Cold Spring Harbor perspectives in biology, 2022-03, Vol.14 (3), p.a040097</ispartof><rights>Copyright © 2022 Cold Spring Harbor Laboratory Press; all rights reserved.</rights><rights>Copyright Cold Spring Harbor Laboratory Press Mar 2022</rights><rights>2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-3d5c5bb9cbc73e9017311c5028ffce568c88a3743337c423e69a6874b3808be33</citedby><cites>FETCH-LOGICAL-c499t-3d5c5bb9cbc73e9017311c5028ffce568c88a3743337c423e69a6874b3808be33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8886983/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8886983/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34001531$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cieslak, Mikolaj</creatorcontrib><creatorcontrib>Owens, Andrew</creatorcontrib><creatorcontrib>Prusinkiewicz, Przemyslaw</creatorcontrib><title>Computational Models of Auxin-Driven Patterning in Shoots</title><title>Cold Spring Harbor perspectives in biology</title><addtitle>Cold Spring Harb Perspect Biol</addtitle><description>Auxin regulates many aspects of plant development and behavior, including the initiation of new outgrowth, patterning of vascular systems, control of branching, and responses to the environment. Computational models have complemented experimental studies of these processes. We review these models from two perspectives. First, we consider cellular and tissue-level models of interaction between auxin and its transporters in shoots. These models form a coherent body of results exploring different hypotheses pertinent to the patterning of new outgrowth and vascular strands. Second, we consider models operating at the level of plant organs and entire plants. We highlight techniques used to reduce the complexity of these models, which provide a path to capturing the essence of studied phenomena while running simulations efficiently.</description><subject>Auxins</subject><subject>Biological Transport</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Environment models</subject><subject>Indoleacetic Acids - metabolism</subject><subject>Mathematical models</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Models, Biological</subject><subject>Organs</subject><subject>PERSPECTIVES</subject><subject>Plant Development</subject><subject>Plants - metabolism</subject><subject>Shoots</subject><issn>1943-0264</issn><issn>1943-0264</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkVtLAzEQhYMotlZ_gSALvviyNdnZS_IilHqFioL6HLJptk3ZJmuSLfrv3dJaqk8zMN8c5sxB6JzgISGYXEs_b5TzjZJhKHCKMSsOUJ-wFGKc5OnhXt9DJ94vMM5zRvNj1IOOJhmQPmJju2zaIIK2RtTRs52q2ke2ikbtlzbxrdMrZaJXEYJyRptZpE30Nrc2-FN0VInaq7NtHaCP-7v38WM8eXl4Go8msUwZCzFMM5mVJZOlLEAxTAogRGY4oVUlVZZTSamAIgWAQqYJqJyJnBZpCRTTUgEM0M1Gt2nLpZpKZYITNW-cXgr3za3Q_O_E6Dmf2RWnlHZ21wJXWwFnP1vlA19qL1VdC6Ns63mSJZQmGBekQy__oQvbuu4xHZUDw5B1X-4o2FDSWe-dqnbHEMzX0fC9aPg2mm7rYt_Hbuc3C_gB-WyNNg</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Cieslak, Mikolaj</creator><creator>Owens, Andrew</creator><creator>Prusinkiewicz, Przemyslaw</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>C1K</scope><scope>H94</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220301</creationdate><title>Computational Models of Auxin-Driven Patterning in Shoots</title><author>Cieslak, Mikolaj ; Owens, Andrew ; Prusinkiewicz, Przemyslaw</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-3d5c5bb9cbc73e9017311c5028ffce568c88a3743337c423e69a6874b3808be33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Auxins</topic><topic>Biological Transport</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Environment models</topic><topic>Indoleacetic Acids - metabolism</topic><topic>Mathematical models</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Models, Biological</topic><topic>Organs</topic><topic>PERSPECTIVES</topic><topic>Plant Development</topic><topic>Plants - metabolism</topic><topic>Shoots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cieslak, Mikolaj</creatorcontrib><creatorcontrib>Owens, Andrew</creatorcontrib><creatorcontrib>Prusinkiewicz, Przemyslaw</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cold Spring Harbor perspectives in biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cieslak, Mikolaj</au><au>Owens, Andrew</au><au>Prusinkiewicz, Przemyslaw</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Models of Auxin-Driven Patterning in Shoots</atitle><jtitle>Cold Spring Harbor perspectives in biology</jtitle><addtitle>Cold Spring Harb Perspect Biol</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>14</volume><issue>3</issue><spage>a040097</spage><pages>a040097-</pages><issn>1943-0264</issn><eissn>1943-0264</eissn><abstract>Auxin regulates many aspects of plant development and behavior, including the initiation of new outgrowth, patterning of vascular systems, control of branching, and responses to the environment. Computational models have complemented experimental studies of these processes. We review these models from two perspectives. First, we consider cellular and tissue-level models of interaction between auxin and its transporters in shoots. These models form a coherent body of results exploring different hypotheses pertinent to the patterning of new outgrowth and vascular strands. Second, we consider models operating at the level of plant organs and entire plants. We highlight techniques used to reduce the complexity of these models, which provide a path to capturing the essence of studied phenomena while running simulations efficiently.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>34001531</pmid><doi>10.1101/cshperspect.a040097</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-0264 |
ispartof | Cold Spring Harbor perspectives in biology, 2022-03, Vol.14 (3), p.a040097 |
issn | 1943-0264 1943-0264 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8886983 |
source | PubMed (Medline) |
subjects | Auxins Biological Transport Computer applications Computer Simulation Environment models Indoleacetic Acids - metabolism Mathematical models Membrane Transport Proteins - metabolism Models, Biological Organs PERSPECTIVES Plant Development Plants - metabolism Shoots |
title | Computational Models of Auxin-Driven Patterning in Shoots |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A03%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Models%20of%20Auxin-Driven%20Patterning%20in%20Shoots&rft.jtitle=Cold%20Spring%20Harbor%20perspectives%20in%20biology&rft.au=Cieslak,%20Mikolaj&rft.date=2022-03-01&rft.volume=14&rft.issue=3&rft.spage=a040097&rft.pages=a040097-&rft.issn=1943-0264&rft.eissn=1943-0264&rft_id=info:doi/10.1101/cshperspect.a040097&rft_dat=%3Cproquest_pubme%3E2639035009%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c499t-3d5c5bb9cbc73e9017311c5028ffce568c88a3743337c423e69a6874b3808be33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2639035009&rft_id=info:pmid/34001531&rfr_iscdi=true |