Loading…
Folding of VemP into translation-arresting secondary structure is driven by the ribosome exit tunnel
Abstract The ribosome is a fundamental biomolecular complex that synthesizes proteins in cells. Nascent proteins emerge from the ribosome through a tunnel, where they may interact with the tunnel walls or small molecules such as antibiotics. These interactions can cause translational arrest with not...
Saved in:
Published in: | Nucleic acids research 2022-02, Vol.50 (4), p.2258-2269 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c412t-e897653b2c92ee386915e384df6857f0edb564cdc94cd5447717859788c205293 |
---|---|
cites | cdi_FETCH-LOGICAL-c412t-e897653b2c92ee386915e384df6857f0edb564cdc94cd5447717859788c205293 |
container_end_page | 2269 |
container_issue | 4 |
container_start_page | 2258 |
container_title | Nucleic acids research |
container_volume | 50 |
creator | Kolář, Michal H Nagy, Gabor Kunkel, John Vaiana, Sara M Bock, Lars V Grubmüller, Helmut |
description | Abstract
The ribosome is a fundamental biomolecular complex that synthesizes proteins in cells. Nascent proteins emerge from the ribosome through a tunnel, where they may interact with the tunnel walls or small molecules such as antibiotics. These interactions can cause translational arrest with notable physiological consequences. Here, we studied the arrest caused by the regulatory peptide VemP, which is known to form α-helices inside the ribosome tunnel near the peptidyl transferase center under specific conditions. We used all-atom molecular dynamics simulations of the entire ribosome and circular dichroism spectroscopy to study the driving forces of helix formation and how VemP causes the translational arrest. To that aim, we compared VemP dynamics in the ribosome tunnel with its dynamics in solution. We show that the VemP peptide has a low helical propensity in water and that the propensity is higher in mixtures of water and trifluorethanol. We propose that helix formation within the ribosome is driven by the interactions of VemP with the tunnel and that a part of VemP acts as an anchor. This anchor might slow down VemP progression through the tunnel enabling α-helix formation, which causes the elongation arrest. |
doi_str_mv | 10.1093/nar/gkac038 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8887479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkac038</oup_id><sourcerecordid>2628300482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-e897653b2c92ee386915e384df6857f0edb564cdc94cd5447717859788c205293</originalsourceid><addsrcrecordid>eNp9kc1P3DAQxa0KVBbaU-_IJ1SpCvgzcS5IaFUoEhIc2l4tx5kspom92A6C_75e7RaVC5eZw_z0Zt48hL5QckpJy8-8iWerP8YSrj6gBeU1q0Rbsz20IJzIihKhDtBhSg-EUEGl-IgOuKSSMEUXqL8MY-_8CocB_4bpDjufA87R-DSa7IKvTIyQ8gZJYIPvTXzBKcfZ5jkCdgn30T2Bx90LzveAo-tCChNgeHYZ59l7GD-h_cGMCT7v-hH6dfn95_JHdXN7db28uKmsoCxXoNqmlrxjtmUAXNUtlaWJfqiVbAYCfSdrYXvbliKFaBraKNk2SllGJGv5ETrf6q7nboLegi9GRr2ObipX62Ccfjvx7l6vwpNWSjWi2Qh83QnE8DgX23pyycI4Gg9hTprVTHFSHsoK-m2L2hhSijC8rqFEb3LRJRe9y6XQx_9f9sr-C6IAJ1sgzOt3lf4CuMuZHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628300482</pqid></control><display><type>article</type><title>Folding of VemP into translation-arresting secondary structure is driven by the ribosome exit tunnel</title><source>Oxford Open</source><source>PubMed Central</source><creator>Kolář, Michal H ; Nagy, Gabor ; Kunkel, John ; Vaiana, Sara M ; Bock, Lars V ; Grubmüller, Helmut</creator><creatorcontrib>Kolář, Michal H ; Nagy, Gabor ; Kunkel, John ; Vaiana, Sara M ; Bock, Lars V ; Grubmüller, Helmut</creatorcontrib><description>Abstract
The ribosome is a fundamental biomolecular complex that synthesizes proteins in cells. Nascent proteins emerge from the ribosome through a tunnel, where they may interact with the tunnel walls or small molecules such as antibiotics. These interactions can cause translational arrest with notable physiological consequences. Here, we studied the arrest caused by the regulatory peptide VemP, which is known to form α-helices inside the ribosome tunnel near the peptidyl transferase center under specific conditions. We used all-atom molecular dynamics simulations of the entire ribosome and circular dichroism spectroscopy to study the driving forces of helix formation and how VemP causes the translational arrest. To that aim, we compared VemP dynamics in the ribosome tunnel with its dynamics in solution. We show that the VemP peptide has a low helical propensity in water and that the propensity is higher in mixtures of water and trifluorethanol. We propose that helix formation within the ribosome is driven by the interactions of VemP with the tunnel and that a part of VemP acts as an anchor. This anchor might slow down VemP progression through the tunnel enabling α-helix formation, which causes the elongation arrest.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkac038</identifier><identifier>PMID: 35150281</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Peptides - metabolism ; Peptidyl Transferases - metabolism ; Protein Biosynthesis ; Protein Folding ; Protein Structure, Secondary ; Proteins - metabolism ; Ribosomes - metabolism ; RNA and RNA-protein complexes ; Water - metabolism</subject><ispartof>Nucleic acids research, 2022-02, Vol.50 (4), p.2258-2269</ispartof><rights>The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022</rights><rights>The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-e897653b2c92ee386915e384df6857f0edb564cdc94cd5447717859788c205293</citedby><cites>FETCH-LOGICAL-c412t-e897653b2c92ee386915e384df6857f0edb564cdc94cd5447717859788c205293</cites><orcidid>0000-0003-0841-944X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8887479/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8887479/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35150281$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kolář, Michal H</creatorcontrib><creatorcontrib>Nagy, Gabor</creatorcontrib><creatorcontrib>Kunkel, John</creatorcontrib><creatorcontrib>Vaiana, Sara M</creatorcontrib><creatorcontrib>Bock, Lars V</creatorcontrib><creatorcontrib>Grubmüller, Helmut</creatorcontrib><title>Folding of VemP into translation-arresting secondary structure is driven by the ribosome exit tunnel</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract
The ribosome is a fundamental biomolecular complex that synthesizes proteins in cells. Nascent proteins emerge from the ribosome through a tunnel, where they may interact with the tunnel walls or small molecules such as antibiotics. These interactions can cause translational arrest with notable physiological consequences. Here, we studied the arrest caused by the regulatory peptide VemP, which is known to form α-helices inside the ribosome tunnel near the peptidyl transferase center under specific conditions. We used all-atom molecular dynamics simulations of the entire ribosome and circular dichroism spectroscopy to study the driving forces of helix formation and how VemP causes the translational arrest. To that aim, we compared VemP dynamics in the ribosome tunnel with its dynamics in solution. We show that the VemP peptide has a low helical propensity in water and that the propensity is higher in mixtures of water and trifluorethanol. We propose that helix formation within the ribosome is driven by the interactions of VemP with the tunnel and that a part of VemP acts as an anchor. This anchor might slow down VemP progression through the tunnel enabling α-helix formation, which causes the elongation arrest.</description><subject>Peptides - metabolism</subject><subject>Peptidyl Transferases - metabolism</subject><subject>Protein Biosynthesis</subject><subject>Protein Folding</subject><subject>Protein Structure, Secondary</subject><subject>Proteins - metabolism</subject><subject>Ribosomes - metabolism</subject><subject>RNA and RNA-protein complexes</subject><subject>Water - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9kc1P3DAQxa0KVBbaU-_IJ1SpCvgzcS5IaFUoEhIc2l4tx5kspom92A6C_75e7RaVC5eZw_z0Zt48hL5QckpJy8-8iWerP8YSrj6gBeU1q0Rbsz20IJzIihKhDtBhSg-EUEGl-IgOuKSSMEUXqL8MY-_8CocB_4bpDjufA87R-DSa7IKvTIyQ8gZJYIPvTXzBKcfZ5jkCdgn30T2Bx90LzveAo-tCChNgeHYZ59l7GD-h_cGMCT7v-hH6dfn95_JHdXN7db28uKmsoCxXoNqmlrxjtmUAXNUtlaWJfqiVbAYCfSdrYXvbliKFaBraKNk2SllGJGv5ETrf6q7nboLegi9GRr2ObipX62Ccfjvx7l6vwpNWSjWi2Qh83QnE8DgX23pyycI4Gg9hTprVTHFSHsoK-m2L2hhSijC8rqFEb3LRJRe9y6XQx_9f9sr-C6IAJ1sgzOt3lf4CuMuZHA</recordid><startdate>20220228</startdate><enddate>20220228</enddate><creator>Kolář, Michal H</creator><creator>Nagy, Gabor</creator><creator>Kunkel, John</creator><creator>Vaiana, Sara M</creator><creator>Bock, Lars V</creator><creator>Grubmüller, Helmut</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0841-944X</orcidid></search><sort><creationdate>20220228</creationdate><title>Folding of VemP into translation-arresting secondary structure is driven by the ribosome exit tunnel</title><author>Kolář, Michal H ; Nagy, Gabor ; Kunkel, John ; Vaiana, Sara M ; Bock, Lars V ; Grubmüller, Helmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-e897653b2c92ee386915e384df6857f0edb564cdc94cd5447717859788c205293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Peptides - metabolism</topic><topic>Peptidyl Transferases - metabolism</topic><topic>Protein Biosynthesis</topic><topic>Protein Folding</topic><topic>Protein Structure, Secondary</topic><topic>Proteins - metabolism</topic><topic>Ribosomes - metabolism</topic><topic>RNA and RNA-protein complexes</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolář, Michal H</creatorcontrib><creatorcontrib>Nagy, Gabor</creatorcontrib><creatorcontrib>Kunkel, John</creatorcontrib><creatorcontrib>Vaiana, Sara M</creatorcontrib><creatorcontrib>Bock, Lars V</creatorcontrib><creatorcontrib>Grubmüller, Helmut</creatorcontrib><collection>Oxford Open</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolář, Michal H</au><au>Nagy, Gabor</au><au>Kunkel, John</au><au>Vaiana, Sara M</au><au>Bock, Lars V</au><au>Grubmüller, Helmut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Folding of VemP into translation-arresting secondary structure is driven by the ribosome exit tunnel</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2022-02-28</date><risdate>2022</risdate><volume>50</volume><issue>4</issue><spage>2258</spage><epage>2269</epage><pages>2258-2269</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><abstract>Abstract
The ribosome is a fundamental biomolecular complex that synthesizes proteins in cells. Nascent proteins emerge from the ribosome through a tunnel, where they may interact with the tunnel walls or small molecules such as antibiotics. These interactions can cause translational arrest with notable physiological consequences. Here, we studied the arrest caused by the regulatory peptide VemP, which is known to form α-helices inside the ribosome tunnel near the peptidyl transferase center under specific conditions. We used all-atom molecular dynamics simulations of the entire ribosome and circular dichroism spectroscopy to study the driving forces of helix formation and how VemP causes the translational arrest. To that aim, we compared VemP dynamics in the ribosome tunnel with its dynamics in solution. We show that the VemP peptide has a low helical propensity in water and that the propensity is higher in mixtures of water and trifluorethanol. We propose that helix formation within the ribosome is driven by the interactions of VemP with the tunnel and that a part of VemP acts as an anchor. This anchor might slow down VemP progression through the tunnel enabling α-helix formation, which causes the elongation arrest.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>35150281</pmid><doi>10.1093/nar/gkac038</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0841-944X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2022-02, Vol.50 (4), p.2258-2269 |
issn | 0305-1048 1362-4962 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8887479 |
source | Oxford Open; PubMed Central |
subjects | Peptides - metabolism Peptidyl Transferases - metabolism Protein Biosynthesis Protein Folding Protein Structure, Secondary Proteins - metabolism Ribosomes - metabolism RNA and RNA-protein complexes Water - metabolism |
title | Folding of VemP into translation-arresting secondary structure is driven by the ribosome exit tunnel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Folding%20of%20VemP%20into%20translation-arresting%20secondary%20structure%20is%20driven%20by%20the%20ribosome%20exit%20tunnel&rft.jtitle=Nucleic%20acids%20research&rft.au=Kol%C3%A1%C5%99,%20Michal%20H&rft.date=2022-02-28&rft.volume=50&rft.issue=4&rft.spage=2258&rft.epage=2269&rft.pages=2258-2269&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkac038&rft_dat=%3Cproquest_pubme%3E2628300482%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-e897653b2c92ee386915e384df6857f0edb564cdc94cd5447717859788c205293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2628300482&rft_id=info:pmid/35150281&rft_oup_id=10.1093/nar/gkac038&rfr_iscdi=true |