Loading…

Folding of VemP into translation-arresting secondary structure is driven by the ribosome exit tunnel

Abstract The ribosome is a fundamental biomolecular complex that synthesizes proteins in cells. Nascent proteins emerge from the ribosome through a tunnel, where they may interact with the tunnel walls or small molecules such as antibiotics. These interactions can cause translational arrest with not...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2022-02, Vol.50 (4), p.2258-2269
Main Authors: Kolář, Michal H, Nagy, Gabor, Kunkel, John, Vaiana, Sara M, Bock, Lars V, Grubmüller, Helmut
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-e897653b2c92ee386915e384df6857f0edb564cdc94cd5447717859788c205293
cites cdi_FETCH-LOGICAL-c412t-e897653b2c92ee386915e384df6857f0edb564cdc94cd5447717859788c205293
container_end_page 2269
container_issue 4
container_start_page 2258
container_title Nucleic acids research
container_volume 50
creator Kolář, Michal H
Nagy, Gabor
Kunkel, John
Vaiana, Sara M
Bock, Lars V
Grubmüller, Helmut
description Abstract The ribosome is a fundamental biomolecular complex that synthesizes proteins in cells. Nascent proteins emerge from the ribosome through a tunnel, where they may interact with the tunnel walls or small molecules such as antibiotics. These interactions can cause translational arrest with notable physiological consequences. Here, we studied the arrest caused by the regulatory peptide VemP, which is known to form α-helices inside the ribosome tunnel near the peptidyl transferase center under specific conditions. We used all-atom molecular dynamics simulations of the entire ribosome and circular dichroism spectroscopy to study the driving forces of helix formation and how VemP causes the translational arrest. To that aim, we compared VemP dynamics in the ribosome tunnel with its dynamics in solution. We show that the VemP peptide has a low helical propensity in water and that the propensity is higher in mixtures of water and trifluorethanol. We propose that helix formation within the ribosome is driven by the interactions of VemP with the tunnel and that a part of VemP acts as an anchor. This anchor might slow down VemP progression through the tunnel enabling α-helix formation, which causes the elongation arrest.
doi_str_mv 10.1093/nar/gkac038
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8887479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkac038</oup_id><sourcerecordid>2628300482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-e897653b2c92ee386915e384df6857f0edb564cdc94cd5447717859788c205293</originalsourceid><addsrcrecordid>eNp9kc1P3DAQxa0KVBbaU-_IJ1SpCvgzcS5IaFUoEhIc2l4tx5kspom92A6C_75e7RaVC5eZw_z0Zt48hL5QckpJy8-8iWerP8YSrj6gBeU1q0Rbsz20IJzIihKhDtBhSg-EUEGl-IgOuKSSMEUXqL8MY-_8CocB_4bpDjufA87R-DSa7IKvTIyQ8gZJYIPvTXzBKcfZ5jkCdgn30T2Bx90LzveAo-tCChNgeHYZ59l7GD-h_cGMCT7v-hH6dfn95_JHdXN7db28uKmsoCxXoNqmlrxjtmUAXNUtlaWJfqiVbAYCfSdrYXvbliKFaBraKNk2SllGJGv5ETrf6q7nboLegi9GRr2ObipX62Ccfjvx7l6vwpNWSjWi2Qh83QnE8DgX23pyycI4Gg9hTprVTHFSHsoK-m2L2hhSijC8rqFEb3LRJRe9y6XQx_9f9sr-C6IAJ1sgzOt3lf4CuMuZHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628300482</pqid></control><display><type>article</type><title>Folding of VemP into translation-arresting secondary structure is driven by the ribosome exit tunnel</title><source>Oxford Open</source><source>PubMed Central</source><creator>Kolář, Michal H ; Nagy, Gabor ; Kunkel, John ; Vaiana, Sara M ; Bock, Lars V ; Grubmüller, Helmut</creator><creatorcontrib>Kolář, Michal H ; Nagy, Gabor ; Kunkel, John ; Vaiana, Sara M ; Bock, Lars V ; Grubmüller, Helmut</creatorcontrib><description>Abstract The ribosome is a fundamental biomolecular complex that synthesizes proteins in cells. Nascent proteins emerge from the ribosome through a tunnel, where they may interact with the tunnel walls or small molecules such as antibiotics. These interactions can cause translational arrest with notable physiological consequences. Here, we studied the arrest caused by the regulatory peptide VemP, which is known to form α-helices inside the ribosome tunnel near the peptidyl transferase center under specific conditions. We used all-atom molecular dynamics simulations of the entire ribosome and circular dichroism spectroscopy to study the driving forces of helix formation and how VemP causes the translational arrest. To that aim, we compared VemP dynamics in the ribosome tunnel with its dynamics in solution. We show that the VemP peptide has a low helical propensity in water and that the propensity is higher in mixtures of water and trifluorethanol. We propose that helix formation within the ribosome is driven by the interactions of VemP with the tunnel and that a part of VemP acts as an anchor. This anchor might slow down VemP progression through the tunnel enabling α-helix formation, which causes the elongation arrest.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkac038</identifier><identifier>PMID: 35150281</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Peptides - metabolism ; Peptidyl Transferases - metabolism ; Protein Biosynthesis ; Protein Folding ; Protein Structure, Secondary ; Proteins - metabolism ; Ribosomes - metabolism ; RNA and RNA-protein complexes ; Water - metabolism</subject><ispartof>Nucleic acids research, 2022-02, Vol.50 (4), p.2258-2269</ispartof><rights>The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022</rights><rights>The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-e897653b2c92ee386915e384df6857f0edb564cdc94cd5447717859788c205293</citedby><cites>FETCH-LOGICAL-c412t-e897653b2c92ee386915e384df6857f0edb564cdc94cd5447717859788c205293</cites><orcidid>0000-0003-0841-944X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8887479/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8887479/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35150281$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kolář, Michal H</creatorcontrib><creatorcontrib>Nagy, Gabor</creatorcontrib><creatorcontrib>Kunkel, John</creatorcontrib><creatorcontrib>Vaiana, Sara M</creatorcontrib><creatorcontrib>Bock, Lars V</creatorcontrib><creatorcontrib>Grubmüller, Helmut</creatorcontrib><title>Folding of VemP into translation-arresting secondary structure is driven by the ribosome exit tunnel</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract The ribosome is a fundamental biomolecular complex that synthesizes proteins in cells. Nascent proteins emerge from the ribosome through a tunnel, where they may interact with the tunnel walls or small molecules such as antibiotics. These interactions can cause translational arrest with notable physiological consequences. Here, we studied the arrest caused by the regulatory peptide VemP, which is known to form α-helices inside the ribosome tunnel near the peptidyl transferase center under specific conditions. We used all-atom molecular dynamics simulations of the entire ribosome and circular dichroism spectroscopy to study the driving forces of helix formation and how VemP causes the translational arrest. To that aim, we compared VemP dynamics in the ribosome tunnel with its dynamics in solution. We show that the VemP peptide has a low helical propensity in water and that the propensity is higher in mixtures of water and trifluorethanol. We propose that helix formation within the ribosome is driven by the interactions of VemP with the tunnel and that a part of VemP acts as an anchor. This anchor might slow down VemP progression through the tunnel enabling α-helix formation, which causes the elongation arrest.</description><subject>Peptides - metabolism</subject><subject>Peptidyl Transferases - metabolism</subject><subject>Protein Biosynthesis</subject><subject>Protein Folding</subject><subject>Protein Structure, Secondary</subject><subject>Proteins - metabolism</subject><subject>Ribosomes - metabolism</subject><subject>RNA and RNA-protein complexes</subject><subject>Water - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9kc1P3DAQxa0KVBbaU-_IJ1SpCvgzcS5IaFUoEhIc2l4tx5kspom92A6C_75e7RaVC5eZw_z0Zt48hL5QckpJy8-8iWerP8YSrj6gBeU1q0Rbsz20IJzIihKhDtBhSg-EUEGl-IgOuKSSMEUXqL8MY-_8CocB_4bpDjufA87R-DSa7IKvTIyQ8gZJYIPvTXzBKcfZ5jkCdgn30T2Bx90LzveAo-tCChNgeHYZ59l7GD-h_cGMCT7v-hH6dfn95_JHdXN7db28uKmsoCxXoNqmlrxjtmUAXNUtlaWJfqiVbAYCfSdrYXvbliKFaBraKNk2SllGJGv5ETrf6q7nboLegi9GRr2ObipX62Ccfjvx7l6vwpNWSjWi2Qh83QnE8DgX23pyycI4Gg9hTprVTHFSHsoK-m2L2hhSijC8rqFEb3LRJRe9y6XQx_9f9sr-C6IAJ1sgzOt3lf4CuMuZHA</recordid><startdate>20220228</startdate><enddate>20220228</enddate><creator>Kolář, Michal H</creator><creator>Nagy, Gabor</creator><creator>Kunkel, John</creator><creator>Vaiana, Sara M</creator><creator>Bock, Lars V</creator><creator>Grubmüller, Helmut</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0841-944X</orcidid></search><sort><creationdate>20220228</creationdate><title>Folding of VemP into translation-arresting secondary structure is driven by the ribosome exit tunnel</title><author>Kolář, Michal H ; Nagy, Gabor ; Kunkel, John ; Vaiana, Sara M ; Bock, Lars V ; Grubmüller, Helmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-e897653b2c92ee386915e384df6857f0edb564cdc94cd5447717859788c205293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Peptides - metabolism</topic><topic>Peptidyl Transferases - metabolism</topic><topic>Protein Biosynthesis</topic><topic>Protein Folding</topic><topic>Protein Structure, Secondary</topic><topic>Proteins - metabolism</topic><topic>Ribosomes - metabolism</topic><topic>RNA and RNA-protein complexes</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolář, Michal H</creatorcontrib><creatorcontrib>Nagy, Gabor</creatorcontrib><creatorcontrib>Kunkel, John</creatorcontrib><creatorcontrib>Vaiana, Sara M</creatorcontrib><creatorcontrib>Bock, Lars V</creatorcontrib><creatorcontrib>Grubmüller, Helmut</creatorcontrib><collection>Oxford Open</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolář, Michal H</au><au>Nagy, Gabor</au><au>Kunkel, John</au><au>Vaiana, Sara M</au><au>Bock, Lars V</au><au>Grubmüller, Helmut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Folding of VemP into translation-arresting secondary structure is driven by the ribosome exit tunnel</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2022-02-28</date><risdate>2022</risdate><volume>50</volume><issue>4</issue><spage>2258</spage><epage>2269</epage><pages>2258-2269</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><abstract>Abstract The ribosome is a fundamental biomolecular complex that synthesizes proteins in cells. Nascent proteins emerge from the ribosome through a tunnel, where they may interact with the tunnel walls or small molecules such as antibiotics. These interactions can cause translational arrest with notable physiological consequences. Here, we studied the arrest caused by the regulatory peptide VemP, which is known to form α-helices inside the ribosome tunnel near the peptidyl transferase center under specific conditions. We used all-atom molecular dynamics simulations of the entire ribosome and circular dichroism spectroscopy to study the driving forces of helix formation and how VemP causes the translational arrest. To that aim, we compared VemP dynamics in the ribosome tunnel with its dynamics in solution. We show that the VemP peptide has a low helical propensity in water and that the propensity is higher in mixtures of water and trifluorethanol. We propose that helix formation within the ribosome is driven by the interactions of VemP with the tunnel and that a part of VemP acts as an anchor. This anchor might slow down VemP progression through the tunnel enabling α-helix formation, which causes the elongation arrest.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>35150281</pmid><doi>10.1093/nar/gkac038</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0841-944X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2022-02, Vol.50 (4), p.2258-2269
issn 0305-1048
1362-4962
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8887479
source Oxford Open; PubMed Central
subjects Peptides - metabolism
Peptidyl Transferases - metabolism
Protein Biosynthesis
Protein Folding
Protein Structure, Secondary
Proteins - metabolism
Ribosomes - metabolism
RNA and RNA-protein complexes
Water - metabolism
title Folding of VemP into translation-arresting secondary structure is driven by the ribosome exit tunnel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Folding%20of%20VemP%20into%20translation-arresting%20secondary%20structure%20is%20driven%20by%20the%20ribosome%20exit%20tunnel&rft.jtitle=Nucleic%20acids%20research&rft.au=Kol%C3%A1%C5%99,%20Michal%20H&rft.date=2022-02-28&rft.volume=50&rft.issue=4&rft.spage=2258&rft.epage=2269&rft.pages=2258-2269&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkac038&rft_dat=%3Cproquest_pubme%3E2628300482%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-e897653b2c92ee386915e384df6857f0edb564cdc94cd5447717859788c205293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2628300482&rft_id=info:pmid/35150281&rft_oup_id=10.1093/nar/gkac038&rfr_iscdi=true