Loading…

Shared Representational Formats for Information Maintained in Working Memory and Information Retrieved from Long-Term Memory

Abstract Current theories propose that the short-term retention of information in working memory (WM) and the recall of information from long-term memory (LTM) are supported by overlapping neural mechanisms in occipital and parietal cortex. However, the extent of the shared representations between W...

Full description

Saved in:
Bibliographic Details
Published in:Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2022-02, Vol.32 (5), p.1077-1092
Main Authors: Vo, Vy A, Sutterer, David W, Foster, Joshua J, Sprague, Thomas C, Awh, Edward, Serences, John T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Current theories propose that the short-term retention of information in working memory (WM) and the recall of information from long-term memory (LTM) are supported by overlapping neural mechanisms in occipital and parietal cortex. However, the extent of the shared representations between WM and LTM is unclear. We designed a spatial memory task that allowed us to directly compare the representations of remembered spatial information in WM and LTM with carefully matched behavioral response precision between tasks. Using multivariate pattern analyses on functional magnetic resonance imaging data, we show that visual memories were represented in a sensory-like code in both memory tasks across retinotopic regions in occipital and parietal cortex. Regions in lateral parietal cortex also encoded remembered locations in both tasks, but in a format that differed from sensory-evoked activity. These results suggest a striking correspondence in the format of representations maintained in WM and retrieved from LTM across occipital and parietal cortex. On the other hand, we also show that activity patterns in nearly all parietal regions, but not occipital regions, contained information that could discriminate between WM and LTM trials. Our data provide new evidence for theories of memory systems and the representation of mnemonic content.
ISSN:1047-3211
1460-2199
DOI:10.1093/cercor/bhab267