Loading…

The Anti-Inflammatory Agent Bindarit Attenuates the Impairment of Neural Development through Suppression of Microglial Activation in a Neonatal Hydrocephalus Mouse Model

Neonatal hydrocephalus presents with various degrees of neuroinflammation and long-term neurologic deficits in surgically treated patients, provoking a need for additional medical treatment. We previously reported elevated neuroinflammation and severe periventricular white matter damage in the ( ) m...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2022-03, Vol.42 (9), p.1820-1844
Main Authors: Iwasawa, Eri, Brown, Farrah N, Shula, Crystal, Kahn, Fatima, Lee, Sang Hoon, Berta, Temugin, Ladle, David R, Campbell, Kenneth, Mangano, Francesco T, Goto, June
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c442t-5394cd7e81c1ee006aa513ff7c3ed9ae893ca3c568b8298b1efac2a9a28b8e383
cites cdi_FETCH-LOGICAL-c442t-5394cd7e81c1ee006aa513ff7c3ed9ae893ca3c568b8298b1efac2a9a28b8e383
container_end_page 1844
container_issue 9
container_start_page 1820
container_title The Journal of neuroscience
container_volume 42
creator Iwasawa, Eri
Brown, Farrah N
Shula, Crystal
Kahn, Fatima
Lee, Sang Hoon
Berta, Temugin
Ladle, David R
Campbell, Kenneth
Mangano, Francesco T
Goto, June
description Neonatal hydrocephalus presents with various degrees of neuroinflammation and long-term neurologic deficits in surgically treated patients, provoking a need for additional medical treatment. We previously reported elevated neuroinflammation and severe periventricular white matter damage in the ( ) mutant which contains a point mutation in the gene, causing loss of cilia-mediated unidirectional CSF flow. In this study, we identified cortical neuropil maturation defects such as impaired excitatory synapse maturation and loss of homeostatic microglia, and swimming locomotor defects in early postnatal mutant mice. Strikingly, systemic application of the anti-inflammatory small molecule bindarit significantly supports healthy postnatal cerebral cortical development in the mutant. While bindarit only mildly reduced the ventricular volume, it significantly improved the edematous appearance and myelination of the corpus callosum. Moreover, the treatment attenuated thinning in cortical Layers II-IV, excitatory synapse formation, and interneuron morphogenesis, by supporting the ramified-shaped homeostatic microglia from excessive cell death. Also, the therapeutic effect led to the alleviation of a spastic locomotor phenotype of the mutant. We found that microglia, but not peripheral monocytes, contribute to amoeboid-shaped activated myeloid cells in mutants' corpus callosum and the proinflammatory cytokines expression. Bindarit blocks nuclear factor (NF)-kB activation and its downstream proinflammatory cytokines, including monocyte chemoattractant protein-1, in the mutant. Collectively, we revealed that amelioration of neuroinflammation is crucial for white matter and neuronal maturation in neonatal hydrocephalus. Future studies of bindarit treatment combined with CSF diversion surgery may provide long-term benefits supporting neuronal development in neonatal hydrocephalus. In neonatal hydrocephalus, little is known about the signaling cascades of neuroinflammation or the impact of such inflammatory insults on neural cell development within the perinatal cerebral cortex. Here, we report that proinflammatory activation of myeloid cells, the majority of which are derived from microglia, impairs periventricular myelination and cortical neuronal maturation using the mouse genetic model of neonatal hydrocephalus. Administration of bindarit, an anti-inflammatory small molecule that blocks nuclear factor (NF)-kB activation, restored the cortical thinning and synaptic matur
doi_str_mv 10.1523/JNEUROSCI.1160-21.2021
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8896558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618237916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-5394cd7e81c1ee006aa513ff7c3ed9ae893ca3c568b8298b1efac2a9a28b8e383</originalsourceid><addsrcrecordid>eNpdkktv1DAUhSMEokPhL1SR2LDJ4Ede3iANQ6GD-pBou7buODcTV4md2s5I85P4lzi0jICNLfl898jHPklyRsmSFox__H59fv_j5na9WVJakozRJSOMvkgWURUZywl9mSwIq0hW5lV-krzx_oEQUhFavU5OeC4Eo5wtkp93HaYrE3S2MW0PwwDBukO62qEJ6WdtGnA6pKsQ0EwQ0Kch8pthBO2GGbFteo2Tgz79gnvs7fj7NHTOTrsuvZ3G0aH32pqZvNLK2V2vI71SQe8hzII2KUQTayBE4eLQOKtw7KCffHplJ49xbbB_m7xqoff47nk_Te6_nt-tL7LLm2-b9eoyU3nOQlZwkaumwpoqikhICVBQ3raV4tgIwFpwBVwVZb2tmai3FFtQDASweIC85qfJpyffcdoO2KiYJ8aTo9MDuIO0oOW_itGd3Nm9rGtRFsVs8OHZwNnHCX2Qg_YK-x4MxjiSlbRmvBK0jOj7_9AHOzkT40WKFwWr8kpEqnyi4ut577A9XoYSObdBHtsg5zZIRuXchjh49neU49if7-e_AJE5tpU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635527479</pqid></control><display><type>article</type><title>The Anti-Inflammatory Agent Bindarit Attenuates the Impairment of Neural Development through Suppression of Microglial Activation in a Neonatal Hydrocephalus Mouse Model</title><source>PubMed (Medline)</source><creator>Iwasawa, Eri ; Brown, Farrah N ; Shula, Crystal ; Kahn, Fatima ; Lee, Sang Hoon ; Berta, Temugin ; Ladle, David R ; Campbell, Kenneth ; Mangano, Francesco T ; Goto, June</creator><creatorcontrib>Iwasawa, Eri ; Brown, Farrah N ; Shula, Crystal ; Kahn, Fatima ; Lee, Sang Hoon ; Berta, Temugin ; Ladle, David R ; Campbell, Kenneth ; Mangano, Francesco T ; Goto, June</creatorcontrib><description>Neonatal hydrocephalus presents with various degrees of neuroinflammation and long-term neurologic deficits in surgically treated patients, provoking a need for additional medical treatment. We previously reported elevated neuroinflammation and severe periventricular white matter damage in the ( ) mutant which contains a point mutation in the gene, causing loss of cilia-mediated unidirectional CSF flow. In this study, we identified cortical neuropil maturation defects such as impaired excitatory synapse maturation and loss of homeostatic microglia, and swimming locomotor defects in early postnatal mutant mice. Strikingly, systemic application of the anti-inflammatory small molecule bindarit significantly supports healthy postnatal cerebral cortical development in the mutant. While bindarit only mildly reduced the ventricular volume, it significantly improved the edematous appearance and myelination of the corpus callosum. Moreover, the treatment attenuated thinning in cortical Layers II-IV, excitatory synapse formation, and interneuron morphogenesis, by supporting the ramified-shaped homeostatic microglia from excessive cell death. Also, the therapeutic effect led to the alleviation of a spastic locomotor phenotype of the mutant. We found that microglia, but not peripheral monocytes, contribute to amoeboid-shaped activated myeloid cells in mutants' corpus callosum and the proinflammatory cytokines expression. Bindarit blocks nuclear factor (NF)-kB activation and its downstream proinflammatory cytokines, including monocyte chemoattractant protein-1, in the mutant. Collectively, we revealed that amelioration of neuroinflammation is crucial for white matter and neuronal maturation in neonatal hydrocephalus. Future studies of bindarit treatment combined with CSF diversion surgery may provide long-term benefits supporting neuronal development in neonatal hydrocephalus. In neonatal hydrocephalus, little is known about the signaling cascades of neuroinflammation or the impact of such inflammatory insults on neural cell development within the perinatal cerebral cortex. Here, we report that proinflammatory activation of myeloid cells, the majority of which are derived from microglia, impairs periventricular myelination and cortical neuronal maturation using the mouse genetic model of neonatal hydrocephalus. Administration of bindarit, an anti-inflammatory small molecule that blocks nuclear factor (NF)-kB activation, restored the cortical thinning and synaptic maturation defects in the mutant brain through suppression of microglial activation. These data indicate the potential therapeutic use of anti-inflammatory reagents targeting neuroinflammation in the treatment of neonatal hydrocephalus.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.1160-21.2021</identifier><identifier>PMID: 34992132</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; Animals, Newborn ; Anti-inflammatory agents ; Anti-Inflammatory Agents - pharmacology ; Anti-Inflammatory Agents - therapeutic use ; Cell death ; Cerebrospinal fluid ; Cilia ; Corpus callosum ; Cytokines ; Defects ; Disease Models, Animal ; Female ; Humans ; Hydrocephalus ; Hydrocephalus - drug therapy ; Indazoles ; Inflammation ; Maturation ; Medical treatment ; Mice ; Microglia ; Monocyte chemoattractant protein ; Monocyte chemoattractant protein 1 ; Monocytes ; Morphogenesis ; Mutants ; Mutation ; Myelination ; Myeloid cells ; Neonates ; Neuropil ; Phenotypes ; Point mutation ; Pregnancy ; Propionates ; Substantia alba ; Swimming ; Synaptogenesis ; Ventricle</subject><ispartof>The Journal of neuroscience, 2022-03, Vol.42 (9), p.1820-1844</ispartof><rights>Copyright © 2022 the authors.</rights><rights>Copyright Society for Neuroscience Mar 2, 2022</rights><rights>Copyright © 2022 the authors 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-5394cd7e81c1ee006aa513ff7c3ed9ae893ca3c568b8298b1efac2a9a28b8e383</citedby><cites>FETCH-LOGICAL-c442t-5394cd7e81c1ee006aa513ff7c3ed9ae893ca3c568b8298b1efac2a9a28b8e383</cites><orcidid>0000-0001-5666-8008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896558/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896558/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34992132$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iwasawa, Eri</creatorcontrib><creatorcontrib>Brown, Farrah N</creatorcontrib><creatorcontrib>Shula, Crystal</creatorcontrib><creatorcontrib>Kahn, Fatima</creatorcontrib><creatorcontrib>Lee, Sang Hoon</creatorcontrib><creatorcontrib>Berta, Temugin</creatorcontrib><creatorcontrib>Ladle, David R</creatorcontrib><creatorcontrib>Campbell, Kenneth</creatorcontrib><creatorcontrib>Mangano, Francesco T</creatorcontrib><creatorcontrib>Goto, June</creatorcontrib><title>The Anti-Inflammatory Agent Bindarit Attenuates the Impairment of Neural Development through Suppression of Microglial Activation in a Neonatal Hydrocephalus Mouse Model</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Neonatal hydrocephalus presents with various degrees of neuroinflammation and long-term neurologic deficits in surgically treated patients, provoking a need for additional medical treatment. We previously reported elevated neuroinflammation and severe periventricular white matter damage in the ( ) mutant which contains a point mutation in the gene, causing loss of cilia-mediated unidirectional CSF flow. In this study, we identified cortical neuropil maturation defects such as impaired excitatory synapse maturation and loss of homeostatic microglia, and swimming locomotor defects in early postnatal mutant mice. Strikingly, systemic application of the anti-inflammatory small molecule bindarit significantly supports healthy postnatal cerebral cortical development in the mutant. While bindarit only mildly reduced the ventricular volume, it significantly improved the edematous appearance and myelination of the corpus callosum. Moreover, the treatment attenuated thinning in cortical Layers II-IV, excitatory synapse formation, and interneuron morphogenesis, by supporting the ramified-shaped homeostatic microglia from excessive cell death. Also, the therapeutic effect led to the alleviation of a spastic locomotor phenotype of the mutant. We found that microglia, but not peripheral monocytes, contribute to amoeboid-shaped activated myeloid cells in mutants' corpus callosum and the proinflammatory cytokines expression. Bindarit blocks nuclear factor (NF)-kB activation and its downstream proinflammatory cytokines, including monocyte chemoattractant protein-1, in the mutant. Collectively, we revealed that amelioration of neuroinflammation is crucial for white matter and neuronal maturation in neonatal hydrocephalus. Future studies of bindarit treatment combined with CSF diversion surgery may provide long-term benefits supporting neuronal development in neonatal hydrocephalus. In neonatal hydrocephalus, little is known about the signaling cascades of neuroinflammation or the impact of such inflammatory insults on neural cell development within the perinatal cerebral cortex. Here, we report that proinflammatory activation of myeloid cells, the majority of which are derived from microglia, impairs periventricular myelination and cortical neuronal maturation using the mouse genetic model of neonatal hydrocephalus. Administration of bindarit, an anti-inflammatory small molecule that blocks nuclear factor (NF)-kB activation, restored the cortical thinning and synaptic maturation defects in the mutant brain through suppression of microglial activation. These data indicate the potential therapeutic use of anti-inflammatory reagents targeting neuroinflammation in the treatment of neonatal hydrocephalus.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Anti-inflammatory agents</subject><subject>Anti-Inflammatory Agents - pharmacology</subject><subject>Anti-Inflammatory Agents - therapeutic use</subject><subject>Cell death</subject><subject>Cerebrospinal fluid</subject><subject>Cilia</subject><subject>Corpus callosum</subject><subject>Cytokines</subject><subject>Defects</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Humans</subject><subject>Hydrocephalus</subject><subject>Hydrocephalus - drug therapy</subject><subject>Indazoles</subject><subject>Inflammation</subject><subject>Maturation</subject><subject>Medical treatment</subject><subject>Mice</subject><subject>Microglia</subject><subject>Monocyte chemoattractant protein</subject><subject>Monocyte chemoattractant protein 1</subject><subject>Monocytes</subject><subject>Morphogenesis</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Myelination</subject><subject>Myeloid cells</subject><subject>Neonates</subject><subject>Neuropil</subject><subject>Phenotypes</subject><subject>Point mutation</subject><subject>Pregnancy</subject><subject>Propionates</subject><subject>Substantia alba</subject><subject>Swimming</subject><subject>Synaptogenesis</subject><subject>Ventricle</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkktv1DAUhSMEokPhL1SR2LDJ4Ede3iANQ6GD-pBou7buODcTV4md2s5I85P4lzi0jICNLfl898jHPklyRsmSFox__H59fv_j5na9WVJakozRJSOMvkgWURUZywl9mSwIq0hW5lV-krzx_oEQUhFavU5OeC4Eo5wtkp93HaYrE3S2MW0PwwDBukO62qEJ6WdtGnA6pKsQ0EwQ0Kch8pthBO2GGbFteo2Tgz79gnvs7fj7NHTOTrsuvZ3G0aH32pqZvNLK2V2vI71SQe8hzII2KUQTayBE4eLQOKtw7KCffHplJ49xbbB_m7xqoff47nk_Te6_nt-tL7LLm2-b9eoyU3nOQlZwkaumwpoqikhICVBQ3raV4tgIwFpwBVwVZb2tmai3FFtQDASweIC85qfJpyffcdoO2KiYJ8aTo9MDuIO0oOW_itGd3Nm9rGtRFsVs8OHZwNnHCX2Qg_YK-x4MxjiSlbRmvBK0jOj7_9AHOzkT40WKFwWr8kpEqnyi4ut577A9XoYSObdBHtsg5zZIRuXchjh49neU49if7-e_AJE5tpU</recordid><startdate>20220302</startdate><enddate>20220302</enddate><creator>Iwasawa, Eri</creator><creator>Brown, Farrah N</creator><creator>Shula, Crystal</creator><creator>Kahn, Fatima</creator><creator>Lee, Sang Hoon</creator><creator>Berta, Temugin</creator><creator>Ladle, David R</creator><creator>Campbell, Kenneth</creator><creator>Mangano, Francesco T</creator><creator>Goto, June</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5666-8008</orcidid></search><sort><creationdate>20220302</creationdate><title>The Anti-Inflammatory Agent Bindarit Attenuates the Impairment of Neural Development through Suppression of Microglial Activation in a Neonatal Hydrocephalus Mouse Model</title><author>Iwasawa, Eri ; Brown, Farrah N ; Shula, Crystal ; Kahn, Fatima ; Lee, Sang Hoon ; Berta, Temugin ; Ladle, David R ; Campbell, Kenneth ; Mangano, Francesco T ; Goto, June</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-5394cd7e81c1ee006aa513ff7c3ed9ae893ca3c568b8298b1efac2a9a28b8e383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Anti-inflammatory agents</topic><topic>Anti-Inflammatory Agents - pharmacology</topic><topic>Anti-Inflammatory Agents - therapeutic use</topic><topic>Cell death</topic><topic>Cerebrospinal fluid</topic><topic>Cilia</topic><topic>Corpus callosum</topic><topic>Cytokines</topic><topic>Defects</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Humans</topic><topic>Hydrocephalus</topic><topic>Hydrocephalus - drug therapy</topic><topic>Indazoles</topic><topic>Inflammation</topic><topic>Maturation</topic><topic>Medical treatment</topic><topic>Mice</topic><topic>Microglia</topic><topic>Monocyte chemoattractant protein</topic><topic>Monocyte chemoattractant protein 1</topic><topic>Monocytes</topic><topic>Morphogenesis</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Myelination</topic><topic>Myeloid cells</topic><topic>Neonates</topic><topic>Neuropil</topic><topic>Phenotypes</topic><topic>Point mutation</topic><topic>Pregnancy</topic><topic>Propionates</topic><topic>Substantia alba</topic><topic>Swimming</topic><topic>Synaptogenesis</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwasawa, Eri</creatorcontrib><creatorcontrib>Brown, Farrah N</creatorcontrib><creatorcontrib>Shula, Crystal</creatorcontrib><creatorcontrib>Kahn, Fatima</creatorcontrib><creatorcontrib>Lee, Sang Hoon</creatorcontrib><creatorcontrib>Berta, Temugin</creatorcontrib><creatorcontrib>Ladle, David R</creatorcontrib><creatorcontrib>Campbell, Kenneth</creatorcontrib><creatorcontrib>Mangano, Francesco T</creatorcontrib><creatorcontrib>Goto, June</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwasawa, Eri</au><au>Brown, Farrah N</au><au>Shula, Crystal</au><au>Kahn, Fatima</au><au>Lee, Sang Hoon</au><au>Berta, Temugin</au><au>Ladle, David R</au><au>Campbell, Kenneth</au><au>Mangano, Francesco T</au><au>Goto, June</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Anti-Inflammatory Agent Bindarit Attenuates the Impairment of Neural Development through Suppression of Microglial Activation in a Neonatal Hydrocephalus Mouse Model</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2022-03-02</date><risdate>2022</risdate><volume>42</volume><issue>9</issue><spage>1820</spage><epage>1844</epage><pages>1820-1844</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>Neonatal hydrocephalus presents with various degrees of neuroinflammation and long-term neurologic deficits in surgically treated patients, provoking a need for additional medical treatment. We previously reported elevated neuroinflammation and severe periventricular white matter damage in the ( ) mutant which contains a point mutation in the gene, causing loss of cilia-mediated unidirectional CSF flow. In this study, we identified cortical neuropil maturation defects such as impaired excitatory synapse maturation and loss of homeostatic microglia, and swimming locomotor defects in early postnatal mutant mice. Strikingly, systemic application of the anti-inflammatory small molecule bindarit significantly supports healthy postnatal cerebral cortical development in the mutant. While bindarit only mildly reduced the ventricular volume, it significantly improved the edematous appearance and myelination of the corpus callosum. Moreover, the treatment attenuated thinning in cortical Layers II-IV, excitatory synapse formation, and interneuron morphogenesis, by supporting the ramified-shaped homeostatic microglia from excessive cell death. Also, the therapeutic effect led to the alleviation of a spastic locomotor phenotype of the mutant. We found that microglia, but not peripheral monocytes, contribute to amoeboid-shaped activated myeloid cells in mutants' corpus callosum and the proinflammatory cytokines expression. Bindarit blocks nuclear factor (NF)-kB activation and its downstream proinflammatory cytokines, including monocyte chemoattractant protein-1, in the mutant. Collectively, we revealed that amelioration of neuroinflammation is crucial for white matter and neuronal maturation in neonatal hydrocephalus. Future studies of bindarit treatment combined with CSF diversion surgery may provide long-term benefits supporting neuronal development in neonatal hydrocephalus. In neonatal hydrocephalus, little is known about the signaling cascades of neuroinflammation or the impact of such inflammatory insults on neural cell development within the perinatal cerebral cortex. Here, we report that proinflammatory activation of myeloid cells, the majority of which are derived from microglia, impairs periventricular myelination and cortical neuronal maturation using the mouse genetic model of neonatal hydrocephalus. Administration of bindarit, an anti-inflammatory small molecule that blocks nuclear factor (NF)-kB activation, restored the cortical thinning and synaptic maturation defects in the mutant brain through suppression of microglial activation. These data indicate the potential therapeutic use of anti-inflammatory reagents targeting neuroinflammation in the treatment of neonatal hydrocephalus.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>34992132</pmid><doi>10.1523/JNEUROSCI.1160-21.2021</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-5666-8008</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2022-03, Vol.42 (9), p.1820-1844
issn 0270-6474
1529-2401
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8896558
source PubMed (Medline)
subjects Animals
Animals, Newborn
Anti-inflammatory agents
Anti-Inflammatory Agents - pharmacology
Anti-Inflammatory Agents - therapeutic use
Cell death
Cerebrospinal fluid
Cilia
Corpus callosum
Cytokines
Defects
Disease Models, Animal
Female
Humans
Hydrocephalus
Hydrocephalus - drug therapy
Indazoles
Inflammation
Maturation
Medical treatment
Mice
Microglia
Monocyte chemoattractant protein
Monocyte chemoattractant protein 1
Monocytes
Morphogenesis
Mutants
Mutation
Myelination
Myeloid cells
Neonates
Neuropil
Phenotypes
Point mutation
Pregnancy
Propionates
Substantia alba
Swimming
Synaptogenesis
Ventricle
title The Anti-Inflammatory Agent Bindarit Attenuates the Impairment of Neural Development through Suppression of Microglial Activation in a Neonatal Hydrocephalus Mouse Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A51%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Anti-Inflammatory%20Agent%20Bindarit%20Attenuates%20the%20Impairment%20of%20Neural%20Development%20through%20Suppression%20of%20Microglial%20Activation%20in%20a%20Neonatal%20Hydrocephalus%20Mouse%20Model&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Iwasawa,%20Eri&rft.date=2022-03-02&rft.volume=42&rft.issue=9&rft.spage=1820&rft.epage=1844&rft.pages=1820-1844&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.1160-21.2021&rft_dat=%3Cproquest_pubme%3E2618237916%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-5394cd7e81c1ee006aa513ff7c3ed9ae893ca3c568b8298b1efac2a9a28b8e383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2635527479&rft_id=info:pmid/34992132&rfr_iscdi=true