Loading…
The Anti-Inflammatory Agent Bindarit Attenuates the Impairment of Neural Development through Suppression of Microglial Activation in a Neonatal Hydrocephalus Mouse Model
Neonatal hydrocephalus presents with various degrees of neuroinflammation and long-term neurologic deficits in surgically treated patients, provoking a need for additional medical treatment. We previously reported elevated neuroinflammation and severe periventricular white matter damage in the ( ) m...
Saved in:
Published in: | The Journal of neuroscience 2022-03, Vol.42 (9), p.1820-1844 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c442t-5394cd7e81c1ee006aa513ff7c3ed9ae893ca3c568b8298b1efac2a9a28b8e383 |
---|---|
cites | cdi_FETCH-LOGICAL-c442t-5394cd7e81c1ee006aa513ff7c3ed9ae893ca3c568b8298b1efac2a9a28b8e383 |
container_end_page | 1844 |
container_issue | 9 |
container_start_page | 1820 |
container_title | The Journal of neuroscience |
container_volume | 42 |
creator | Iwasawa, Eri Brown, Farrah N Shula, Crystal Kahn, Fatima Lee, Sang Hoon Berta, Temugin Ladle, David R Campbell, Kenneth Mangano, Francesco T Goto, June |
description | Neonatal hydrocephalus presents with various degrees of neuroinflammation and long-term neurologic deficits in surgically treated patients, provoking a need for additional medical treatment. We previously reported elevated neuroinflammation and severe periventricular white matter damage in the
(
) mutant which contains a point mutation in the
gene, causing loss of cilia-mediated unidirectional CSF flow. In this study, we identified cortical neuropil maturation defects such as impaired excitatory synapse maturation and loss of homeostatic microglia, and swimming locomotor defects in early postnatal
mutant mice. Strikingly, systemic application of the anti-inflammatory small molecule bindarit significantly supports healthy postnatal cerebral cortical development in the
mutant. While bindarit only mildly reduced the ventricular volume, it significantly improved the edematous appearance and myelination of the corpus callosum. Moreover, the treatment attenuated thinning in cortical Layers II-IV, excitatory synapse formation, and interneuron morphogenesis, by supporting the ramified-shaped homeostatic microglia from excessive cell death. Also, the therapeutic effect led to the alleviation of a spastic locomotor phenotype of the mutant. We found that microglia, but not peripheral monocytes, contribute to amoeboid-shaped activated myeloid cells in
mutants' corpus callosum and the proinflammatory cytokines expression. Bindarit blocks nuclear factor (NF)-kB activation and its downstream proinflammatory cytokines, including monocyte chemoattractant protein-1, in the
mutant. Collectively, we revealed that amelioration of neuroinflammation is crucial for white matter and neuronal maturation in neonatal hydrocephalus. Future studies of bindarit treatment combined with CSF diversion surgery may provide long-term benefits supporting neuronal development in neonatal hydrocephalus.
In neonatal hydrocephalus, little is known about the signaling cascades of neuroinflammation or the impact of such inflammatory insults on neural cell development within the perinatal cerebral cortex. Here, we report that proinflammatory activation of myeloid cells, the majority of which are derived from microglia, impairs periventricular myelination and cortical neuronal maturation using the mouse
genetic model of neonatal hydrocephalus. Administration of bindarit, an anti-inflammatory small molecule that blocks nuclear factor (NF)-kB activation, restored the cortical thinning and synaptic matur |
doi_str_mv | 10.1523/JNEUROSCI.1160-21.2021 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8896558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618237916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-5394cd7e81c1ee006aa513ff7c3ed9ae893ca3c568b8298b1efac2a9a28b8e383</originalsourceid><addsrcrecordid>eNpdkktv1DAUhSMEokPhL1SR2LDJ4Ede3iANQ6GD-pBou7buODcTV4md2s5I85P4lzi0jICNLfl898jHPklyRsmSFox__H59fv_j5na9WVJakozRJSOMvkgWURUZywl9mSwIq0hW5lV-krzx_oEQUhFavU5OeC4Eo5wtkp93HaYrE3S2MW0PwwDBukO62qEJ6WdtGnA6pKsQ0EwQ0Kch8pthBO2GGbFteo2Tgz79gnvs7fj7NHTOTrsuvZ3G0aH32pqZvNLK2V2vI71SQe8hzII2KUQTayBE4eLQOKtw7KCffHplJ49xbbB_m7xqoff47nk_Te6_nt-tL7LLm2-b9eoyU3nOQlZwkaumwpoqikhICVBQ3raV4tgIwFpwBVwVZb2tmai3FFtQDASweIC85qfJpyffcdoO2KiYJ8aTo9MDuIO0oOW_itGd3Nm9rGtRFsVs8OHZwNnHCX2Qg_YK-x4MxjiSlbRmvBK0jOj7_9AHOzkT40WKFwWr8kpEqnyi4ut577A9XoYSObdBHtsg5zZIRuXchjh49neU49if7-e_AJE5tpU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635527479</pqid></control><display><type>article</type><title>The Anti-Inflammatory Agent Bindarit Attenuates the Impairment of Neural Development through Suppression of Microglial Activation in a Neonatal Hydrocephalus Mouse Model</title><source>PubMed (Medline)</source><creator>Iwasawa, Eri ; Brown, Farrah N ; Shula, Crystal ; Kahn, Fatima ; Lee, Sang Hoon ; Berta, Temugin ; Ladle, David R ; Campbell, Kenneth ; Mangano, Francesco T ; Goto, June</creator><creatorcontrib>Iwasawa, Eri ; Brown, Farrah N ; Shula, Crystal ; Kahn, Fatima ; Lee, Sang Hoon ; Berta, Temugin ; Ladle, David R ; Campbell, Kenneth ; Mangano, Francesco T ; Goto, June</creatorcontrib><description>Neonatal hydrocephalus presents with various degrees of neuroinflammation and long-term neurologic deficits in surgically treated patients, provoking a need for additional medical treatment. We previously reported elevated neuroinflammation and severe periventricular white matter damage in the
(
) mutant which contains a point mutation in the
gene, causing loss of cilia-mediated unidirectional CSF flow. In this study, we identified cortical neuropil maturation defects such as impaired excitatory synapse maturation and loss of homeostatic microglia, and swimming locomotor defects in early postnatal
mutant mice. Strikingly, systemic application of the anti-inflammatory small molecule bindarit significantly supports healthy postnatal cerebral cortical development in the
mutant. While bindarit only mildly reduced the ventricular volume, it significantly improved the edematous appearance and myelination of the corpus callosum. Moreover, the treatment attenuated thinning in cortical Layers II-IV, excitatory synapse formation, and interneuron morphogenesis, by supporting the ramified-shaped homeostatic microglia from excessive cell death. Also, the therapeutic effect led to the alleviation of a spastic locomotor phenotype of the mutant. We found that microglia, but not peripheral monocytes, contribute to amoeboid-shaped activated myeloid cells in
mutants' corpus callosum and the proinflammatory cytokines expression. Bindarit blocks nuclear factor (NF)-kB activation and its downstream proinflammatory cytokines, including monocyte chemoattractant protein-1, in the
mutant. Collectively, we revealed that amelioration of neuroinflammation is crucial for white matter and neuronal maturation in neonatal hydrocephalus. Future studies of bindarit treatment combined with CSF diversion surgery may provide long-term benefits supporting neuronal development in neonatal hydrocephalus.
In neonatal hydrocephalus, little is known about the signaling cascades of neuroinflammation or the impact of such inflammatory insults on neural cell development within the perinatal cerebral cortex. Here, we report that proinflammatory activation of myeloid cells, the majority of which are derived from microglia, impairs periventricular myelination and cortical neuronal maturation using the mouse
genetic model of neonatal hydrocephalus. Administration of bindarit, an anti-inflammatory small molecule that blocks nuclear factor (NF)-kB activation, restored the cortical thinning and synaptic maturation defects in the
mutant brain through suppression of microglial activation. These data indicate the potential therapeutic use of anti-inflammatory reagents targeting neuroinflammation in the treatment of neonatal hydrocephalus.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.1160-21.2021</identifier><identifier>PMID: 34992132</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; Animals, Newborn ; Anti-inflammatory agents ; Anti-Inflammatory Agents - pharmacology ; Anti-Inflammatory Agents - therapeutic use ; Cell death ; Cerebrospinal fluid ; Cilia ; Corpus callosum ; Cytokines ; Defects ; Disease Models, Animal ; Female ; Humans ; Hydrocephalus ; Hydrocephalus - drug therapy ; Indazoles ; Inflammation ; Maturation ; Medical treatment ; Mice ; Microglia ; Monocyte chemoattractant protein ; Monocyte chemoattractant protein 1 ; Monocytes ; Morphogenesis ; Mutants ; Mutation ; Myelination ; Myeloid cells ; Neonates ; Neuropil ; Phenotypes ; Point mutation ; Pregnancy ; Propionates ; Substantia alba ; Swimming ; Synaptogenesis ; Ventricle</subject><ispartof>The Journal of neuroscience, 2022-03, Vol.42 (9), p.1820-1844</ispartof><rights>Copyright © 2022 the authors.</rights><rights>Copyright Society for Neuroscience Mar 2, 2022</rights><rights>Copyright © 2022 the authors 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-5394cd7e81c1ee006aa513ff7c3ed9ae893ca3c568b8298b1efac2a9a28b8e383</citedby><cites>FETCH-LOGICAL-c442t-5394cd7e81c1ee006aa513ff7c3ed9ae893ca3c568b8298b1efac2a9a28b8e383</cites><orcidid>0000-0001-5666-8008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896558/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896558/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34992132$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iwasawa, Eri</creatorcontrib><creatorcontrib>Brown, Farrah N</creatorcontrib><creatorcontrib>Shula, Crystal</creatorcontrib><creatorcontrib>Kahn, Fatima</creatorcontrib><creatorcontrib>Lee, Sang Hoon</creatorcontrib><creatorcontrib>Berta, Temugin</creatorcontrib><creatorcontrib>Ladle, David R</creatorcontrib><creatorcontrib>Campbell, Kenneth</creatorcontrib><creatorcontrib>Mangano, Francesco T</creatorcontrib><creatorcontrib>Goto, June</creatorcontrib><title>The Anti-Inflammatory Agent Bindarit Attenuates the Impairment of Neural Development through Suppression of Microglial Activation in a Neonatal Hydrocephalus Mouse Model</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Neonatal hydrocephalus presents with various degrees of neuroinflammation and long-term neurologic deficits in surgically treated patients, provoking a need for additional medical treatment. We previously reported elevated neuroinflammation and severe periventricular white matter damage in the
(
) mutant which contains a point mutation in the
gene, causing loss of cilia-mediated unidirectional CSF flow. In this study, we identified cortical neuropil maturation defects such as impaired excitatory synapse maturation and loss of homeostatic microglia, and swimming locomotor defects in early postnatal
mutant mice. Strikingly, systemic application of the anti-inflammatory small molecule bindarit significantly supports healthy postnatal cerebral cortical development in the
mutant. While bindarit only mildly reduced the ventricular volume, it significantly improved the edematous appearance and myelination of the corpus callosum. Moreover, the treatment attenuated thinning in cortical Layers II-IV, excitatory synapse formation, and interneuron morphogenesis, by supporting the ramified-shaped homeostatic microglia from excessive cell death. Also, the therapeutic effect led to the alleviation of a spastic locomotor phenotype of the mutant. We found that microglia, but not peripheral monocytes, contribute to amoeboid-shaped activated myeloid cells in
mutants' corpus callosum and the proinflammatory cytokines expression. Bindarit blocks nuclear factor (NF)-kB activation and its downstream proinflammatory cytokines, including monocyte chemoattractant protein-1, in the
mutant. Collectively, we revealed that amelioration of neuroinflammation is crucial for white matter and neuronal maturation in neonatal hydrocephalus. Future studies of bindarit treatment combined with CSF diversion surgery may provide long-term benefits supporting neuronal development in neonatal hydrocephalus.
In neonatal hydrocephalus, little is known about the signaling cascades of neuroinflammation or the impact of such inflammatory insults on neural cell development within the perinatal cerebral cortex. Here, we report that proinflammatory activation of myeloid cells, the majority of which are derived from microglia, impairs periventricular myelination and cortical neuronal maturation using the mouse
genetic model of neonatal hydrocephalus. Administration of bindarit, an anti-inflammatory small molecule that blocks nuclear factor (NF)-kB activation, restored the cortical thinning and synaptic maturation defects in the
mutant brain through suppression of microglial activation. These data indicate the potential therapeutic use of anti-inflammatory reagents targeting neuroinflammation in the treatment of neonatal hydrocephalus.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Anti-inflammatory agents</subject><subject>Anti-Inflammatory Agents - pharmacology</subject><subject>Anti-Inflammatory Agents - therapeutic use</subject><subject>Cell death</subject><subject>Cerebrospinal fluid</subject><subject>Cilia</subject><subject>Corpus callosum</subject><subject>Cytokines</subject><subject>Defects</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Humans</subject><subject>Hydrocephalus</subject><subject>Hydrocephalus - drug therapy</subject><subject>Indazoles</subject><subject>Inflammation</subject><subject>Maturation</subject><subject>Medical treatment</subject><subject>Mice</subject><subject>Microglia</subject><subject>Monocyte chemoattractant protein</subject><subject>Monocyte chemoattractant protein 1</subject><subject>Monocytes</subject><subject>Morphogenesis</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Myelination</subject><subject>Myeloid cells</subject><subject>Neonates</subject><subject>Neuropil</subject><subject>Phenotypes</subject><subject>Point mutation</subject><subject>Pregnancy</subject><subject>Propionates</subject><subject>Substantia alba</subject><subject>Swimming</subject><subject>Synaptogenesis</subject><subject>Ventricle</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkktv1DAUhSMEokPhL1SR2LDJ4Ede3iANQ6GD-pBou7buODcTV4md2s5I85P4lzi0jICNLfl898jHPklyRsmSFox__H59fv_j5na9WVJakozRJSOMvkgWURUZywl9mSwIq0hW5lV-krzx_oEQUhFavU5OeC4Eo5wtkp93HaYrE3S2MW0PwwDBukO62qEJ6WdtGnA6pKsQ0EwQ0Kch8pthBO2GGbFteo2Tgz79gnvs7fj7NHTOTrsuvZ3G0aH32pqZvNLK2V2vI71SQe8hzII2KUQTayBE4eLQOKtw7KCffHplJ49xbbB_m7xqoff47nk_Te6_nt-tL7LLm2-b9eoyU3nOQlZwkaumwpoqikhICVBQ3raV4tgIwFpwBVwVZb2tmai3FFtQDASweIC85qfJpyffcdoO2KiYJ8aTo9MDuIO0oOW_itGd3Nm9rGtRFsVs8OHZwNnHCX2Qg_YK-x4MxjiSlbRmvBK0jOj7_9AHOzkT40WKFwWr8kpEqnyi4ut577A9XoYSObdBHtsg5zZIRuXchjh49neU49if7-e_AJE5tpU</recordid><startdate>20220302</startdate><enddate>20220302</enddate><creator>Iwasawa, Eri</creator><creator>Brown, Farrah N</creator><creator>Shula, Crystal</creator><creator>Kahn, Fatima</creator><creator>Lee, Sang Hoon</creator><creator>Berta, Temugin</creator><creator>Ladle, David R</creator><creator>Campbell, Kenneth</creator><creator>Mangano, Francesco T</creator><creator>Goto, June</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5666-8008</orcidid></search><sort><creationdate>20220302</creationdate><title>The Anti-Inflammatory Agent Bindarit Attenuates the Impairment of Neural Development through Suppression of Microglial Activation in a Neonatal Hydrocephalus Mouse Model</title><author>Iwasawa, Eri ; Brown, Farrah N ; Shula, Crystal ; Kahn, Fatima ; Lee, Sang Hoon ; Berta, Temugin ; Ladle, David R ; Campbell, Kenneth ; Mangano, Francesco T ; Goto, June</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-5394cd7e81c1ee006aa513ff7c3ed9ae893ca3c568b8298b1efac2a9a28b8e383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Anti-inflammatory agents</topic><topic>Anti-Inflammatory Agents - pharmacology</topic><topic>Anti-Inflammatory Agents - therapeutic use</topic><topic>Cell death</topic><topic>Cerebrospinal fluid</topic><topic>Cilia</topic><topic>Corpus callosum</topic><topic>Cytokines</topic><topic>Defects</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Humans</topic><topic>Hydrocephalus</topic><topic>Hydrocephalus - drug therapy</topic><topic>Indazoles</topic><topic>Inflammation</topic><topic>Maturation</topic><topic>Medical treatment</topic><topic>Mice</topic><topic>Microglia</topic><topic>Monocyte chemoattractant protein</topic><topic>Monocyte chemoattractant protein 1</topic><topic>Monocytes</topic><topic>Morphogenesis</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Myelination</topic><topic>Myeloid cells</topic><topic>Neonates</topic><topic>Neuropil</topic><topic>Phenotypes</topic><topic>Point mutation</topic><topic>Pregnancy</topic><topic>Propionates</topic><topic>Substantia alba</topic><topic>Swimming</topic><topic>Synaptogenesis</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwasawa, Eri</creatorcontrib><creatorcontrib>Brown, Farrah N</creatorcontrib><creatorcontrib>Shula, Crystal</creatorcontrib><creatorcontrib>Kahn, Fatima</creatorcontrib><creatorcontrib>Lee, Sang Hoon</creatorcontrib><creatorcontrib>Berta, Temugin</creatorcontrib><creatorcontrib>Ladle, David R</creatorcontrib><creatorcontrib>Campbell, Kenneth</creatorcontrib><creatorcontrib>Mangano, Francesco T</creatorcontrib><creatorcontrib>Goto, June</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwasawa, Eri</au><au>Brown, Farrah N</au><au>Shula, Crystal</au><au>Kahn, Fatima</au><au>Lee, Sang Hoon</au><au>Berta, Temugin</au><au>Ladle, David R</au><au>Campbell, Kenneth</au><au>Mangano, Francesco T</au><au>Goto, June</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Anti-Inflammatory Agent Bindarit Attenuates the Impairment of Neural Development through Suppression of Microglial Activation in a Neonatal Hydrocephalus Mouse Model</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2022-03-02</date><risdate>2022</risdate><volume>42</volume><issue>9</issue><spage>1820</spage><epage>1844</epage><pages>1820-1844</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>Neonatal hydrocephalus presents with various degrees of neuroinflammation and long-term neurologic deficits in surgically treated patients, provoking a need for additional medical treatment. We previously reported elevated neuroinflammation and severe periventricular white matter damage in the
(
) mutant which contains a point mutation in the
gene, causing loss of cilia-mediated unidirectional CSF flow. In this study, we identified cortical neuropil maturation defects such as impaired excitatory synapse maturation and loss of homeostatic microglia, and swimming locomotor defects in early postnatal
mutant mice. Strikingly, systemic application of the anti-inflammatory small molecule bindarit significantly supports healthy postnatal cerebral cortical development in the
mutant. While bindarit only mildly reduced the ventricular volume, it significantly improved the edematous appearance and myelination of the corpus callosum. Moreover, the treatment attenuated thinning in cortical Layers II-IV, excitatory synapse formation, and interneuron morphogenesis, by supporting the ramified-shaped homeostatic microglia from excessive cell death. Also, the therapeutic effect led to the alleviation of a spastic locomotor phenotype of the mutant. We found that microglia, but not peripheral monocytes, contribute to amoeboid-shaped activated myeloid cells in
mutants' corpus callosum and the proinflammatory cytokines expression. Bindarit blocks nuclear factor (NF)-kB activation and its downstream proinflammatory cytokines, including monocyte chemoattractant protein-1, in the
mutant. Collectively, we revealed that amelioration of neuroinflammation is crucial for white matter and neuronal maturation in neonatal hydrocephalus. Future studies of bindarit treatment combined with CSF diversion surgery may provide long-term benefits supporting neuronal development in neonatal hydrocephalus.
In neonatal hydrocephalus, little is known about the signaling cascades of neuroinflammation or the impact of such inflammatory insults on neural cell development within the perinatal cerebral cortex. Here, we report that proinflammatory activation of myeloid cells, the majority of which are derived from microglia, impairs periventricular myelination and cortical neuronal maturation using the mouse
genetic model of neonatal hydrocephalus. Administration of bindarit, an anti-inflammatory small molecule that blocks nuclear factor (NF)-kB activation, restored the cortical thinning and synaptic maturation defects in the
mutant brain through suppression of microglial activation. These data indicate the potential therapeutic use of anti-inflammatory reagents targeting neuroinflammation in the treatment of neonatal hydrocephalus.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>34992132</pmid><doi>10.1523/JNEUROSCI.1160-21.2021</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-5666-8008</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2022-03, Vol.42 (9), p.1820-1844 |
issn | 0270-6474 1529-2401 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8896558 |
source | PubMed (Medline) |
subjects | Animals Animals, Newborn Anti-inflammatory agents Anti-Inflammatory Agents - pharmacology Anti-Inflammatory Agents - therapeutic use Cell death Cerebrospinal fluid Cilia Corpus callosum Cytokines Defects Disease Models, Animal Female Humans Hydrocephalus Hydrocephalus - drug therapy Indazoles Inflammation Maturation Medical treatment Mice Microglia Monocyte chemoattractant protein Monocyte chemoattractant protein 1 Monocytes Morphogenesis Mutants Mutation Myelination Myeloid cells Neonates Neuropil Phenotypes Point mutation Pregnancy Propionates Substantia alba Swimming Synaptogenesis Ventricle |
title | The Anti-Inflammatory Agent Bindarit Attenuates the Impairment of Neural Development through Suppression of Microglial Activation in a Neonatal Hydrocephalus Mouse Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A51%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Anti-Inflammatory%20Agent%20Bindarit%20Attenuates%20the%20Impairment%20of%20Neural%20Development%20through%20Suppression%20of%20Microglial%20Activation%20in%20a%20Neonatal%20Hydrocephalus%20Mouse%20Model&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Iwasawa,%20Eri&rft.date=2022-03-02&rft.volume=42&rft.issue=9&rft.spage=1820&rft.epage=1844&rft.pages=1820-1844&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.1160-21.2021&rft_dat=%3Cproquest_pubme%3E2618237916%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-5394cd7e81c1ee006aa513ff7c3ed9ae893ca3c568b8298b1efac2a9a28b8e383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2635527479&rft_id=info:pmid/34992132&rfr_iscdi=true |