Loading…

Major differences in glycosylation and fucosyltransferase expression in low-grade versus high-grade bladder cancer cell lines

Abstract Bladder cancer is the ninth most frequently diagnosed cancer worldwide, and there is a need to develop new biomarkers for staging and prognosis of this disease. Here we report that cell lines derived from low-grade and high-grade bladder cancers exhibit major differences in expression of gl...

Full description

Saved in:
Bibliographic Details
Published in:Glycobiology (Oxford) 2021-12, Vol.31 (11), p.1444-1463
Main Authors: Ezeabikwa, Bernadette, Mondal, Nandini, Antonopoulos, Aristotelis, Haslam, Stuart M, Matsumoto, Yasuyuki, Martin-Caraballo, Miguel, Lehoux, Sylvain, Mandalasi, Msano, Ishaque, Ali, Heimburg-Molinaro, Jamie, Cummings, Richard D, Nyame, Anthony K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Bladder cancer is the ninth most frequently diagnosed cancer worldwide, and there is a need to develop new biomarkers for staging and prognosis of this disease. Here we report that cell lines derived from low-grade and high-grade bladder cancers exhibit major differences in expression of glycans in surface glycoproteins. We analyzed protein glycosylation in three low-grade bladder cancer cell lines RT4 (grade-1-2), 5637 (grade-2), and SW780 (grade-1), and three high-grade bladder cancer cell lines J82COT (grade-3), T24 (grade-3) and TCCSUP (grade-4), with primary bladder epithelial cells, A/T/N, serving as a normal bladder cell control. Using a variety of approaches including flow cytometry, immunofluorescence, glycomics and gene expression analysis, we observed that the low-grade bladder cancer cell lines RT4, 5637 and SW780 express high levels of the fucosylated Lewis-X antigen (Lex, CD15) (Galβ1–4(Fucα1–3)GlcNAcβ1-R), while normal bladder epithelial A/T/N cells lack Lex expression. T24 and TCCSUP cells also lack Lex, whereas J82COT cells express low levels of Lex. Glycomics analyses revealed other major differences in fucosylation and sialylation of N-glycans between these cell types. O-glycans are highly differentiated, as RT4 cells synthesize core 2-based O-glycans that are lacking in the T24 cells. These differences in glycan expression correlated with differences in RNA expression levels of their cognate glycosyltransferases, including α1–3/4-fucosyltransferase genes. These major differences in glycan structures and gene expression profiles between low- and high-grade bladder cancer cells suggest that glycans and glycosyltransferases are candidate biomarkers for grading bladder cancers.
ISSN:1460-2423
0959-6658
1460-2423
DOI:10.1093/glycob/cwab083