Loading…
SIRT1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage
Vasospasm and delayed cerebral ischemia (DCI) contribute significantly to the morbidity/mortality associated with aneurysmal subarachnoid hemorrhage (SAH). While considerable research effort has focused on preventing or reversing vasospasm, SAH-induced brain injury occurs in response to a multitude...
Saved in:
Published in: | Experimental neurology 2020-12, Vol.334, p.113484-113484, Article 113484 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c475t-8751d1304490ef988a9cdb75113a295f80270f15e7de9cb3d34ddad4ac9184113 |
---|---|
cites | cdi_FETCH-LOGICAL-c475t-8751d1304490ef988a9cdb75113a295f80270f15e7de9cb3d34ddad4ac9184113 |
container_end_page | 113484 |
container_issue | |
container_start_page | 113484 |
container_title | Experimental neurology |
container_volume | 334 |
creator | Vellimana, Ananth K. Aum, Diane J. Diwan, Deepti Clarke, Julian V. Nelson, James W. Lawrence, Molly Han, Byung Hee Gidday, Jeffrey M. Zipfel, Gregory J. |
description | Vasospasm and delayed cerebral ischemia (DCI) contribute significantly to the morbidity/mortality associated with aneurysmal subarachnoid hemorrhage (SAH). While considerable research effort has focused on preventing or reversing vasospasm, SAH-induced brain injury occurs in response to a multitude of concomitantly acting pathophysiologic mechanisms. In this regard, the pleiotropic epigenetic responses to conditioning-based therapeutics may provide an ideal SAH therapeutic strategy. We previously documented the ability of hypoxic preconditioning (PC) to attenuate vasospasm and neurological deficits after SAH, in a manner that depends on the activity of endothelial nitric oxide synthase. The present study was undertaken to elucidate whether the NAD-dependent protein deacetylase sirtuin isoform SIRT1 is an upstream mediator of hypoxic PC-induced protection, and to assess the efficacy of the SIRT1-activating polyphenol Resveratrol as a pharmacologic preconditioning therapy.
Wild-type C57BL/6J mice were utilized in the study and subjected to normoxia or hypoxic PC. Surgical procedures included induction of SAH via endovascular perforation or sham surgery. Multiple endpoints were assessed including cerebral vasospasm, neurobehavioral deficits, SIRT1 expression via quantitative real-time PCR for mRNA, and western blot for protein quantification. Pharmacological agents utilized in the study include EX-527 (SIRT1 inhibitor), and Resveratrol (SIRT1 activator).
Hypoxic PC leads to rapid and sustained increase in cerebral SIRT1 mRNA and protein expression. SIRT1 inhibition blocks the protective effects of hypoxic PC on vasospasm and neurological deficits. Resveratrol pretreatment dose-dependently abrogates vasospasm and attenuates neurological deficits following SAH – beneficial effects that were similarly blocked by pharmacologic inhibition of SIRT1.
SIRT1 mediates hypoxic preconditioning-induced protection against neurovascular dysfunction after SAH. Resveratrol mimics this neurovascular protection, at least in part, via SIRT1. Activation of SIRT1 is a promising, novel, pleiotropic therapeutic strategy to combat DCI after SAH.
•Hypoxic preconditioning protects against deficits after subarachnoid hemorrhage.•Hypoxic preconditioning induces robust upregulation of SIRT1.•SIRT1 mediates hypoxic preconditioning induced protection in subarachnoid hemorrhage.•Resveratrol mimics preconditioning induced protection in subarachnoid hemorrhage. |
doi_str_mv | 10.1016/j.expneurol.2020.113484 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8908895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014488620303150</els_id><sourcerecordid>2448408058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-8751d1304490ef988a9cdb75113a295f80270f15e7de9cb3d34ddad4ac9184113</originalsourceid><addsrcrecordid>eNqFkUFvEzEQhS0EomnhL4CPXDaMd71d-4JUVUArVUKCcrYcezbraGMv9jpt_j1OUyI4cbL05r2Z8XyEvGewZMAuP26W-Dh5zDGMyxrqorKGC_6CLBhIqGrewEuyAGC84kJcnpHzlDYAIHndvSZnTQMM6rZdkP2P2-_3jG7ROj1josN-Co_O0CmiCd662QXv_Jo6b7NBS_U8o8_6INPQ06cVdjqZPOpI7T712ZunYh_GMTwcoimvdNRm8MFZOuA2xDjoNb4hr3o9Jnz7_F6Qn18-31_fVHffvt5eX91VhnftXImuZZY1wLkE7KUQWhq7KiJrdC3bXkDdQc9a7CxKs2psw63VlmsjmeDFdUE-HftOeVW-adDPUY9qim6r414F7dS_Fe8GtQ47JSQIIdvS4MNzgxh-ZUyz2rpkcBy1x5CTqnm5PAhoRbF2R6uJIaWI_WkMA3UApzbqBE4dwKkjuJJ89_eWp9wfUsVwdTRgudXOYVTJOPSFiSuoZmWD---Q38dusxo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448408058</pqid></control><display><type>article</type><title>SIRT1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage</title><source>ScienceDirect Journals</source><creator>Vellimana, Ananth K. ; Aum, Diane J. ; Diwan, Deepti ; Clarke, Julian V. ; Nelson, James W. ; Lawrence, Molly ; Han, Byung Hee ; Gidday, Jeffrey M. ; Zipfel, Gregory J.</creator><creatorcontrib>Vellimana, Ananth K. ; Aum, Diane J. ; Diwan, Deepti ; Clarke, Julian V. ; Nelson, James W. ; Lawrence, Molly ; Han, Byung Hee ; Gidday, Jeffrey M. ; Zipfel, Gregory J.</creatorcontrib><description>Vasospasm and delayed cerebral ischemia (DCI) contribute significantly to the morbidity/mortality associated with aneurysmal subarachnoid hemorrhage (SAH). While considerable research effort has focused on preventing or reversing vasospasm, SAH-induced brain injury occurs in response to a multitude of concomitantly acting pathophysiologic mechanisms. In this regard, the pleiotropic epigenetic responses to conditioning-based therapeutics may provide an ideal SAH therapeutic strategy. We previously documented the ability of hypoxic preconditioning (PC) to attenuate vasospasm and neurological deficits after SAH, in a manner that depends on the activity of endothelial nitric oxide synthase. The present study was undertaken to elucidate whether the NAD-dependent protein deacetylase sirtuin isoform SIRT1 is an upstream mediator of hypoxic PC-induced protection, and to assess the efficacy of the SIRT1-activating polyphenol Resveratrol as a pharmacologic preconditioning therapy.
Wild-type C57BL/6J mice were utilized in the study and subjected to normoxia or hypoxic PC. Surgical procedures included induction of SAH via endovascular perforation or sham surgery. Multiple endpoints were assessed including cerebral vasospasm, neurobehavioral deficits, SIRT1 expression via quantitative real-time PCR for mRNA, and western blot for protein quantification. Pharmacological agents utilized in the study include EX-527 (SIRT1 inhibitor), and Resveratrol (SIRT1 activator).
Hypoxic PC leads to rapid and sustained increase in cerebral SIRT1 mRNA and protein expression. SIRT1 inhibition blocks the protective effects of hypoxic PC on vasospasm and neurological deficits. Resveratrol pretreatment dose-dependently abrogates vasospasm and attenuates neurological deficits following SAH – beneficial effects that were similarly blocked by pharmacologic inhibition of SIRT1.
SIRT1 mediates hypoxic preconditioning-induced protection against neurovascular dysfunction after SAH. Resveratrol mimics this neurovascular protection, at least in part, via SIRT1. Activation of SIRT1 is a promising, novel, pleiotropic therapeutic strategy to combat DCI after SAH.
•Hypoxic preconditioning protects against deficits after subarachnoid hemorrhage.•Hypoxic preconditioning induces robust upregulation of SIRT1.•SIRT1 mediates hypoxic preconditioning induced protection in subarachnoid hemorrhage.•Resveratrol mimics preconditioning induced protection in subarachnoid hemorrhage.</description><identifier>ISSN: 0014-4886</identifier><identifier>EISSN: 1090-2430</identifier><identifier>DOI: 10.1016/j.expneurol.2020.113484</identifier><identifier>PMID: 33010255</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Antioxidants - pharmacology ; Carbazoles - pharmacology ; Delayed cerebral ischemia ; Hypoxia-Ischemia, Brain - metabolism ; Hypoxia-Ischemia, Brain - pathology ; Ischemic Preconditioning - methods ; Male ; Mice ; Mice, Inbred C57BL ; Resveratrol ; Resveratrol - pharmacology ; SIRT1 ; Sirtuin ; Sirtuin 1 - antagonists & inhibitors ; Sirtuin 1 - metabolism ; Subarachnoid hemorrhage ; Subarachnoid Hemorrhage - metabolism ; Subarachnoid Hemorrhage - pathology ; Vasospasm ; Vasospasm, Intracranial - metabolism ; Vasospasm, Intracranial - pathology ; Vasospasm, Intracranial - prevention & control</subject><ispartof>Experimental neurology, 2020-12, Vol.334, p.113484-113484, Article 113484</ispartof><rights>2020</rights><rights>Copyright © 2020. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-8751d1304490ef988a9cdb75113a295f80270f15e7de9cb3d34ddad4ac9184113</citedby><cites>FETCH-LOGICAL-c475t-8751d1304490ef988a9cdb75113a295f80270f15e7de9cb3d34ddad4ac9184113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33010255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vellimana, Ananth K.</creatorcontrib><creatorcontrib>Aum, Diane J.</creatorcontrib><creatorcontrib>Diwan, Deepti</creatorcontrib><creatorcontrib>Clarke, Julian V.</creatorcontrib><creatorcontrib>Nelson, James W.</creatorcontrib><creatorcontrib>Lawrence, Molly</creatorcontrib><creatorcontrib>Han, Byung Hee</creatorcontrib><creatorcontrib>Gidday, Jeffrey M.</creatorcontrib><creatorcontrib>Zipfel, Gregory J.</creatorcontrib><title>SIRT1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage</title><title>Experimental neurology</title><addtitle>Exp Neurol</addtitle><description>Vasospasm and delayed cerebral ischemia (DCI) contribute significantly to the morbidity/mortality associated with aneurysmal subarachnoid hemorrhage (SAH). While considerable research effort has focused on preventing or reversing vasospasm, SAH-induced brain injury occurs in response to a multitude of concomitantly acting pathophysiologic mechanisms. In this regard, the pleiotropic epigenetic responses to conditioning-based therapeutics may provide an ideal SAH therapeutic strategy. We previously documented the ability of hypoxic preconditioning (PC) to attenuate vasospasm and neurological deficits after SAH, in a manner that depends on the activity of endothelial nitric oxide synthase. The present study was undertaken to elucidate whether the NAD-dependent protein deacetylase sirtuin isoform SIRT1 is an upstream mediator of hypoxic PC-induced protection, and to assess the efficacy of the SIRT1-activating polyphenol Resveratrol as a pharmacologic preconditioning therapy.
Wild-type C57BL/6J mice were utilized in the study and subjected to normoxia or hypoxic PC. Surgical procedures included induction of SAH via endovascular perforation or sham surgery. Multiple endpoints were assessed including cerebral vasospasm, neurobehavioral deficits, SIRT1 expression via quantitative real-time PCR for mRNA, and western blot for protein quantification. Pharmacological agents utilized in the study include EX-527 (SIRT1 inhibitor), and Resveratrol (SIRT1 activator).
Hypoxic PC leads to rapid and sustained increase in cerebral SIRT1 mRNA and protein expression. SIRT1 inhibition blocks the protective effects of hypoxic PC on vasospasm and neurological deficits. Resveratrol pretreatment dose-dependently abrogates vasospasm and attenuates neurological deficits following SAH – beneficial effects that were similarly blocked by pharmacologic inhibition of SIRT1.
SIRT1 mediates hypoxic preconditioning-induced protection against neurovascular dysfunction after SAH. Resveratrol mimics this neurovascular protection, at least in part, via SIRT1. Activation of SIRT1 is a promising, novel, pleiotropic therapeutic strategy to combat DCI after SAH.
•Hypoxic preconditioning protects against deficits after subarachnoid hemorrhage.•Hypoxic preconditioning induces robust upregulation of SIRT1.•SIRT1 mediates hypoxic preconditioning induced protection in subarachnoid hemorrhage.•Resveratrol mimics preconditioning induced protection in subarachnoid hemorrhage.</description><subject>Animals</subject><subject>Antioxidants - pharmacology</subject><subject>Carbazoles - pharmacology</subject><subject>Delayed cerebral ischemia</subject><subject>Hypoxia-Ischemia, Brain - metabolism</subject><subject>Hypoxia-Ischemia, Brain - pathology</subject><subject>Ischemic Preconditioning - methods</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Resveratrol</subject><subject>Resveratrol - pharmacology</subject><subject>SIRT1</subject><subject>Sirtuin</subject><subject>Sirtuin 1 - antagonists & inhibitors</subject><subject>Sirtuin 1 - metabolism</subject><subject>Subarachnoid hemorrhage</subject><subject>Subarachnoid Hemorrhage - metabolism</subject><subject>Subarachnoid Hemorrhage - pathology</subject><subject>Vasospasm</subject><subject>Vasospasm, Intracranial - metabolism</subject><subject>Vasospasm, Intracranial - pathology</subject><subject>Vasospasm, Intracranial - prevention & control</subject><issn>0014-4886</issn><issn>1090-2430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkUFvEzEQhS0EomnhL4CPXDaMd71d-4JUVUArVUKCcrYcezbraGMv9jpt_j1OUyI4cbL05r2Z8XyEvGewZMAuP26W-Dh5zDGMyxrqorKGC_6CLBhIqGrewEuyAGC84kJcnpHzlDYAIHndvSZnTQMM6rZdkP2P2-_3jG7ROj1josN-Co_O0CmiCd662QXv_Jo6b7NBS_U8o8_6INPQ06cVdjqZPOpI7T712ZunYh_GMTwcoimvdNRm8MFZOuA2xDjoNb4hr3o9Jnz7_F6Qn18-31_fVHffvt5eX91VhnftXImuZZY1wLkE7KUQWhq7KiJrdC3bXkDdQc9a7CxKs2psw63VlmsjmeDFdUE-HftOeVW-adDPUY9qim6r414F7dS_Fe8GtQ47JSQIIdvS4MNzgxh-ZUyz2rpkcBy1x5CTqnm5PAhoRbF2R6uJIaWI_WkMA3UApzbqBE4dwKkjuJJ89_eWp9wfUsVwdTRgudXOYVTJOPSFiSuoZmWD---Q38dusxo</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Vellimana, Ananth K.</creator><creator>Aum, Diane J.</creator><creator>Diwan, Deepti</creator><creator>Clarke, Julian V.</creator><creator>Nelson, James W.</creator><creator>Lawrence, Molly</creator><creator>Han, Byung Hee</creator><creator>Gidday, Jeffrey M.</creator><creator>Zipfel, Gregory J.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201201</creationdate><title>SIRT1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage</title><author>Vellimana, Ananth K. ; Aum, Diane J. ; Diwan, Deepti ; Clarke, Julian V. ; Nelson, James W. ; Lawrence, Molly ; Han, Byung Hee ; Gidday, Jeffrey M. ; Zipfel, Gregory J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-8751d1304490ef988a9cdb75113a295f80270f15e7de9cb3d34ddad4ac9184113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Antioxidants - pharmacology</topic><topic>Carbazoles - pharmacology</topic><topic>Delayed cerebral ischemia</topic><topic>Hypoxia-Ischemia, Brain - metabolism</topic><topic>Hypoxia-Ischemia, Brain - pathology</topic><topic>Ischemic Preconditioning - methods</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Resveratrol</topic><topic>Resveratrol - pharmacology</topic><topic>SIRT1</topic><topic>Sirtuin</topic><topic>Sirtuin 1 - antagonists & inhibitors</topic><topic>Sirtuin 1 - metabolism</topic><topic>Subarachnoid hemorrhage</topic><topic>Subarachnoid Hemorrhage - metabolism</topic><topic>Subarachnoid Hemorrhage - pathology</topic><topic>Vasospasm</topic><topic>Vasospasm, Intracranial - metabolism</topic><topic>Vasospasm, Intracranial - pathology</topic><topic>Vasospasm, Intracranial - prevention & control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vellimana, Ananth K.</creatorcontrib><creatorcontrib>Aum, Diane J.</creatorcontrib><creatorcontrib>Diwan, Deepti</creatorcontrib><creatorcontrib>Clarke, Julian V.</creatorcontrib><creatorcontrib>Nelson, James W.</creatorcontrib><creatorcontrib>Lawrence, Molly</creatorcontrib><creatorcontrib>Han, Byung Hee</creatorcontrib><creatorcontrib>Gidday, Jeffrey M.</creatorcontrib><creatorcontrib>Zipfel, Gregory J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vellimana, Ananth K.</au><au>Aum, Diane J.</au><au>Diwan, Deepti</au><au>Clarke, Julian V.</au><au>Nelson, James W.</au><au>Lawrence, Molly</au><au>Han, Byung Hee</au><au>Gidday, Jeffrey M.</au><au>Zipfel, Gregory J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SIRT1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage</atitle><jtitle>Experimental neurology</jtitle><addtitle>Exp Neurol</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>334</volume><spage>113484</spage><epage>113484</epage><pages>113484-113484</pages><artnum>113484</artnum><issn>0014-4886</issn><eissn>1090-2430</eissn><abstract>Vasospasm and delayed cerebral ischemia (DCI) contribute significantly to the morbidity/mortality associated with aneurysmal subarachnoid hemorrhage (SAH). While considerable research effort has focused on preventing or reversing vasospasm, SAH-induced brain injury occurs in response to a multitude of concomitantly acting pathophysiologic mechanisms. In this regard, the pleiotropic epigenetic responses to conditioning-based therapeutics may provide an ideal SAH therapeutic strategy. We previously documented the ability of hypoxic preconditioning (PC) to attenuate vasospasm and neurological deficits after SAH, in a manner that depends on the activity of endothelial nitric oxide synthase. The present study was undertaken to elucidate whether the NAD-dependent protein deacetylase sirtuin isoform SIRT1 is an upstream mediator of hypoxic PC-induced protection, and to assess the efficacy of the SIRT1-activating polyphenol Resveratrol as a pharmacologic preconditioning therapy.
Wild-type C57BL/6J mice were utilized in the study and subjected to normoxia or hypoxic PC. Surgical procedures included induction of SAH via endovascular perforation or sham surgery. Multiple endpoints were assessed including cerebral vasospasm, neurobehavioral deficits, SIRT1 expression via quantitative real-time PCR for mRNA, and western blot for protein quantification. Pharmacological agents utilized in the study include EX-527 (SIRT1 inhibitor), and Resveratrol (SIRT1 activator).
Hypoxic PC leads to rapid and sustained increase in cerebral SIRT1 mRNA and protein expression. SIRT1 inhibition blocks the protective effects of hypoxic PC on vasospasm and neurological deficits. Resveratrol pretreatment dose-dependently abrogates vasospasm and attenuates neurological deficits following SAH – beneficial effects that were similarly blocked by pharmacologic inhibition of SIRT1.
SIRT1 mediates hypoxic preconditioning-induced protection against neurovascular dysfunction after SAH. Resveratrol mimics this neurovascular protection, at least in part, via SIRT1. Activation of SIRT1 is a promising, novel, pleiotropic therapeutic strategy to combat DCI after SAH.
•Hypoxic preconditioning protects against deficits after subarachnoid hemorrhage.•Hypoxic preconditioning induces robust upregulation of SIRT1.•SIRT1 mediates hypoxic preconditioning induced protection in subarachnoid hemorrhage.•Resveratrol mimics preconditioning induced protection in subarachnoid hemorrhage.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33010255</pmid><doi>10.1016/j.expneurol.2020.113484</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-4886 |
ispartof | Experimental neurology, 2020-12, Vol.334, p.113484-113484, Article 113484 |
issn | 0014-4886 1090-2430 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8908895 |
source | ScienceDirect Journals |
subjects | Animals Antioxidants - pharmacology Carbazoles - pharmacology Delayed cerebral ischemia Hypoxia-Ischemia, Brain - metabolism Hypoxia-Ischemia, Brain - pathology Ischemic Preconditioning - methods Male Mice Mice, Inbred C57BL Resveratrol Resveratrol - pharmacology SIRT1 Sirtuin Sirtuin 1 - antagonists & inhibitors Sirtuin 1 - metabolism Subarachnoid hemorrhage Subarachnoid Hemorrhage - metabolism Subarachnoid Hemorrhage - pathology Vasospasm Vasospasm, Intracranial - metabolism Vasospasm, Intracranial - pathology Vasospasm, Intracranial - prevention & control |
title | SIRT1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A28%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SIRT1%20mediates%20hypoxic%20preconditioning%20induced%20attenuation%20of%20neurovascular%20dysfunction%20following%20subarachnoid%20hemorrhage&rft.jtitle=Experimental%20neurology&rft.au=Vellimana,%20Ananth%20K.&rft.date=2020-12-01&rft.volume=334&rft.spage=113484&rft.epage=113484&rft.pages=113484-113484&rft.artnum=113484&rft.issn=0014-4886&rft.eissn=1090-2430&rft_id=info:doi/10.1016/j.expneurol.2020.113484&rft_dat=%3Cproquest_pubme%3E2448408058%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-8751d1304490ef988a9cdb75113a295f80270f15e7de9cb3d34ddad4ac9184113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2448408058&rft_id=info:pmid/33010255&rfr_iscdi=true |